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Supervisor’s Foreword

We are now surrounded by the ubiquitous complex networks, varying from the
World Wide Web to the booming online social networks, from the power grid to
the transportation network, from the communication networks to various economic
networks, from the networks within cell or organism to the network of ecosystem.
These networks are from various disciplines, constructed for different purposes, and
seem to be unrelated to each other. However, these networks exhibit astounding gen-
eral characteristics, including the small-world phenomenon and the power-law de-
gree distribution. It is the right time to say that “the network takeover”. Meanwhile,
comprehensive research on complex networks requires the revolution of method-
ology. The reductionism, as a paradigm, is expired. The graph theory, as a mathe-
matical discipline, hits the limit. From the perspective of complexity and with the
network thinking, data-driven methodology is developing into a new discipline, i.e.,
network science.

As a salient structural characteristic of complex networks, community structure
indicates the regularity of topological structure and reflects the locality of relation-
ships among the components of networks. Community structure is fundamental to
many functional features of complex networks, such as the robustness and naviga-
bility. Moreover, community structure affects or even determines the behavior of the
dynamical processes taking place on networks, including the information diffusion,
the spread of disease and rumor, and synchronization. Therefore, community struc-
ture is crucial to understanding the relation between the structure and function of
complex networks and has important theoretical and practical implications to utilize
and control the dynamics on, or of, the complex networks.

This book focuses on the community structure of complex networks. In partic-
ular, this book provides a clear review for the research advances in the community
detection of networks, which is one of the hottest research topics in network sci-
ence. In this book, the author studies four critical aspects of community structure.
The four aspects are the overlaps among communities, the multiscale of community
structure, the relationship between community structure and network dynamics, and
the coexistence of multiple types of structural regularities beyond community struc-
ture. Aiming to investigate the community structure in real world networks, this

vii



viii Supervisor’s Foreword

book first highlights the limitation of modularity optimization, which is a classic
method for community detection. The author first proposes the algorithm to simul-
taneously detect the overlapping and hierarchical community structure. Then, the
author proposes a dimensionality reduction framework for uncovering the multi-
scale community structure in networks with heterogeneous networks. Further, the
author studies the diffusion dynamics on networks and reveals the relationship be-
tween the table transients in diffusion process and the intrinsic community structure
in networks. Finally, the author explores the multiple types of structural regularities
in networks using probabilistic graphical model. Most of the preliminary works of
this book have been published in prestigious journals on network science, e.g., the
Physical Review E, and Journal of Statistical Mechanics. This book is also heav-
ily based on Dr. Shen’s doctoral thesis, but with a substantial expansion based on
his follow-up research. Dr. Shen’s thesis was completed in Research Center for Re-
search Center for Web Data Science and Engineering, Institute of Computing Tech-
nology, Chinese Academy of Sciences. This thesis was honored with the “Top 100
Excellent Doctoral Dissertations Award” from the Chinese Academy of Sciences
and was nominated as the “Outstanding Doctoral Dissertation” by the Chinese Com-
puter Federation. In general, this book brings together the recent research efforts of
Dr. Shen in the field of community structure in networks.

I believe both the researchers and practitioners in the field of social network
analysis and the broader area of network science can benefit from reading this book.
Moreover, this book shows the research track of Dr. Shen from a Ph.D. student to
a professor, which may be of interest particularly to new Ph.D. students. I want to
compliment Dr. Shen for having written such an outstanding book for the network
science community.

Xue-Qi ChengInstitute of Computing Technology, Beijing, China
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Chapter 1
Community Structure: An Introduction

1.1 Network Science: An Emerging Discipline

Nature and society are composed of a wide variety of complex systems with very
different scales. These systems range from cell to ecosystem, from the Internet to
the Web, from power grid to various communication systems, from stock markets to
other economic systems. Distinguishing from simple systems where the strength of
interaction is uniquely determined by the physical distance, the components of com-
plex systems highly interact with each other in the way unconstrained by certain dis-
tance measurements. These interactions influence and even determine the function
and behavior of these complex systems. The whole system is not the simple aggre-
gation of all these components. The system itself exhibits collective characteristics
which are distinct from individual behavior. The collective behavior is emergent
from spontaneous individual behaviors. We can see that disorder and order coexist
in complex systems. To understand the function and behavior of complex systems,
we need to study the pattern of interactions among components [1].

Network provides a powerful mathematical tool to represent and study complex
systems [2]. For example, the scientific literature can be represented as a network of
articles connected by citation relationships; the Web is a vast information network of
Web pages linked by hyperlinks; the Internet is a network of routers or autonomous
systems connected by various physical links or wireless links; society is a complex
network where nodes are individuals and links correspond to various social relation-
ships; the cell is depicted as networks of chemicals linked by chemical reactions; the
stock market is best described as a network of traders linked by trading relationships.
The underlying networks for these complex systems exhibit non-trivial topological
characteristics. It requires considerable efforts to understand the structure of these
complex networks and to provide some insights for understanding of the function
of networks [3].

Network is absolutely not a new concept. Actually, the study of network has
a long history and can date back to Euler’s solution of the puzzle of Köigsberg’s
bridges in 1736 [4]. Since then, graph theory is gradually formed and has devel-
oped an arsenal of successful tools to study the properties of networks [5]. As the
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2 1 Community Structure: An Introduction

most prominent development with respect to network in the last century, random
networks, developed by Erdős and Rényi, place us in an ultimately random uni-
verse [6]. Meanwhile, scientists who do not believe in the wholly-random universe
begin to investigate real world networks from various fields. Such kind of empirical
studies gradually terminates the random universe for network and finally leads to
the birth of a new discipline—network science [2, 3, 7–9].

The emergence of network science is contributed to two critical historic oppor-
tunities: the unprecedent availability of data from various fields and the increased
computing power or computational resources. In addition, the breakdown of bound-
aries between disciplines enables scientists to share diverse datasets and communi-
cate ideas from different disciplines. This allows them to uncover the generic prop-
erties of complex networks.

Network science aims to investigate the universal properties of networks, to study
the mechanism underlying the formation and growth of networks, to find the intrin-
sic laws dominating the universe of networks. Three well-known generic proper-
ties of complex networks are respectively power-law degree distribution [10], small
world [11], and the high clustering coefficient [11]. In this monograph, we will fo-
cus on the community structure of network, which is another salient and common
structural characteristic of complex network [12, 13].

1.2 Community Structure: An Salient Structural Characteristic
of Networks

We know that real networks are not random and they usually exhibit inhomogeneity,
indicating the coexistence of order and organization. For example, the power-law de-
gree distribution characterizes the inhomogeneity of node degrees, i.e., a few nodes
with very high degree coexist with many nodes with low degree. Furthermore, the
distribution of links also shows inhomogeneity, globally and locally, describing the
phenomenon that nodes naturally cluster into groups and links are more likely to
connect nodes within the same group. This phenomenon tells us that the organiza-
tion of network is modular. Network scientists call this phenomenon as community
structure of networks [14].

Community structure embodies the famous saying that “the birds of a feather
flock together”. In society, individuals with similar interests are more likely to
become friends [15, 16]. In the Web, web pages with related topics are often hy-
perlinked together [17]. In the protein interaction network, communities are com-
posed of proteins with the same specific function for chemical reactions [18, 19].
In metabolic networks, communities may correspond to functional modules such as
cycles and pathways [20]. In food webs, compartments can be viewed as communi-
ties [21, 22].

Communities in networks are crucial to understand the organization principle and
the structural regularities of networks. For the Web, organizing the web pages with
related topics into communities is convenient to Web surfers to efficiently browse
the Web. For the Internet, communications are often conducted within the commu-
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nities which correspond to computers in the same autonomous system. In online
shopping sites, customers with similar purchase history are viewed as communities
and these communities are often used to improve the effectiveness of recommen-
dation systems. For self-organizing networks, community is critical to efficient de-
centralized navigation and it is often used to guide the design of routing tables that
specify how nodes have to communicate to other nodes. Furthermore, communities
are also helpful to network visualization and network compression.

Furthermore, community structure is important since it is closely related to the
hierarchical organization of many complex systems in the real world. For exam-
ple, the organization of company is hierarchical: a company is composed of several
departments and each department may comprise in several groups and so on. For
human body, the body is composed by organs and organs are composed by tissues.
These hierarchical organization is corresponds the hierarchical community struc-
ture, i.e., networks are composed by communities including smaller communities,
which in turn include smaller communities, etc. Such kind of hierarchical organiza-
tion provides a way to make the system function efficiently and effectively. In this
hierarchical organization, each subpart can be improved by adopting new technol-
ogy independently. Also, it reduces the possibility that errors or failures can cascade
in the whole systems.

Because of the important implication of community structure, the community
structure has attracted much academic and industrial attention from various fields.
In 2002, Girvan and Newman first investigate the community structure in social and
biological networks [14]. In their seminal paper, the communities are identified in
a divisive way, where links are deleted iteratively according to the measurement
“edge betweenness”. This measurement quantifies the importance of the role of the
edges in bridging the communication of signals transmitted along the shortest path.
Since then, the community structure becomes one of the hottest research topics in
network science. The participation of physicists brings about the method of spin
models, optimization, percolation, random walks, and synchronization. Meanwhile,
the scientists in computer science and machine learning provide us many efficient
algorithms and techniques for the identification of network communities. The study
on community structure has also taken advantage of concepts and methods from
computer science, nonlinear dynamics, sociology, discrete mathematics. In what
follows, we will give a brief review for the development on community detection.

1.3 A Brief Review for Community Detection

Many methods for community detection have been proposed and successfully ap-
plied to several specific networks [12]. Each method has a specific definition to com-
munity or has certain understanding or explanation to the implication of community
structure in networks. In this section, we do not aim to give a thorough survey for
the development of community detection methods. We just want to give the readers
a brief introduction to community detection and to help readers to grasp the main
aspects of community detection.
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1.3.1 What Is a Community?

The most fundamental question for community detection is “what is a community”.
Different answers to this question will lead to different community detection meth-
ods. Unfortunately, community is only a qualitative concept and there is no widely-
accepted quantitative definition to community until now. Generally speaking, the
definition to community depends heavily on the specific context and the application
demand. Moreover, several researchers just take the output results of their commu-
nity detection methods as community and do not give any definition or description
to their obtained communities. In general, communities of network are groups of
nodes within which nodes are much more connected to each other than to the rest
part of the network. Based on the different perspective of the definition to commu-
nity, definitions to community can be roughly classified into two categories, namely
local definition and global definition. In what follows, we will introduce the three
kinds of definitions and several classic definitions.

1.3.1.1 Local Definitions to Community

Local definitions to community define a community only according to the informa-
tion of the community itself. Specifically, a node group is defined as a community
by giving some required properties of the group or by setting some constraints to
the group. According to the links considered in the definition of community, local
definitions to community can be further classified into two categories.

The first category of local definitions focuses only on the inner links of com-
munity. In general, a community is defined as a node group which satisfies certain
constraint and which is not the subset of any other group which also satisfies this
constraint. According to the link density of a node group, the link pattern with the
highest link density is clique. Thus, community can be defined as maximal clique.
However, the rigid requirement of link density defies such a definition. To combat
this problem, several kinds of relaxation to the definition are proposed. Palla et al.
proposed to use clique percolation to define community [23]. This kind of definition
to community is a generalization to connected component of networks. Meanwhile,
the definition based on clique percolation can avoid the high requirement for link
density of maximal cliques. Furthermore, researchers also proposed several other
relaxations. The n-clique based community [24] requires that the distance between
any two nodes in the same community is no more than n. Note that the n-clique
based community cannot guarantee that the diameter of a community is no more
than n. The reason is that two nodes in the same community may reach each other
along the path containing the nodes outside the community. To combat this problem,
several variations, e.g., n-clan and n-club [25] are proposed. Furthermore, the con-
straint is further relaxed from constraints on any pair of nodes to constraints on the
relationship between each node with all the other nodes in the community. Specifical
examples are k-plex [26] and k-core [27], which are widely used in sociometric and
social network analysis. Taking the k-core as an example, k-core based community
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requires that each node in the community have links to at least k nodes in the same
community. In addition, k-core is equivalent to p-quasi clique [28].

The second category of local definitions considers both the inner links of com-
munity and the links between the community and the rest part of networks. The
representative definitions are the definition of strong community and weak commu-
nity [29]. Strong community requires that each node in the community have more
links connecting to the nodes within the community than to the nodes outside the
community. This definition is also called LS-set [30]. Accordingly, weak community
requires that the sum of degrees for nodes within the community is larger than the
number of links point to the rest of network. Note that a strong community is also
a weak community. Hu et al. further gave an alternative definition to weak commu-
nity and strong community by considering the links among different communities
instead of considering the links between the target community and the rest of net-
work [31]. The latter definition of strong and weak community is consistent with the
constructing rule of benchmark networks [14] proposed by Girvan and Newman.

1.3.1.2 Global Definitions to Community

Global definitions to community focus on the properties of the whole network rather
than the properties of the community itself. The representative global definition is
in terms of the network partition. By giving a measurement to evaluate the quality
of network partition, we can find the optimal partition of network. This network
partition provides the results of community, i.e., each component of the partition
corresponds to a community. The well-known global definition to community is
the modularity proposed by Girvan and Newman [32]. They take the configuration
model as the null model to generate reference networks and characterize the modular
structure of network by comparing the partition of real network with its randomized
part in reference networks. The reference networks generated by the configuration
model possess the same degree sequence to the real network. With the modularity at
hand, the community structure can be detected by optimizing the modularity to find
the optimal partition. The proposal of modularity greatly propels the development of
community detection. Many optimization methods are then proposed to detect com-
munity by optimizing modularity with different heuristic strategies. Reichardt and
Bornholdt considered the Potts model and gave an extended modularity [33]. More-
over, Rosvall and Bergstrom proposed a new measurement for network partition by
studying the expected description length of a random walk on networks [34]. In ad-
dition, several probabilistic methods are proposed to model the network data. The
likelihood of generating the network according to probabilistic model can be taken
as an objective function which implicitly define the community of network [35].

As a summary, global definitions of community are accepted more widely than
local definitions of community. The main reason lies in that global definition study
community structure from the perspective of the whole network rather than from the
perspective of the community itself. The basic idea behind each global definition
to community corresponds to an insight to the community as a salient structural
regularity of network.
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1.3.2 Community Detection

Community detection is the central research topic in network science. In the last
decade, lots of literature devote to the detection of community structure in networks.
Here, we will review the main development of community detection. For a thorough
survey about community detection, readers can refer to Ref. [12].

1.3.2.1 Hierarchical Clustering

Community detection is closely related to the problem of graph clustering. Actually,
most traditional methods for community detection are borrowed from graph cluster-
ing or graph cut [36]. Typical examples include the RatioCut [37] and NCut [38].
Among these traditional methods for community detection, the most successful
methods are hierarchical clustering methods [39].

Hierarchical clustering methods can be classified into two classes: agglomera-
tive methods and divisive methods. Agglomerative methods work in a bottom-up
manner. At the beginning, each node is viewed as a community. Then communi-
ties are iteratively merged according to certain given measurement which quantifies
the similarity between communities. The merging process terminates until all the
nodes belong to the same community. On the contrary, divisive methods work in a
top-down manner. At the beginning, all the nodes belong to the same community.
Then we divide the community iteratively using certain given strategy until each
node belongs to its own community. For both the agglomerative methods and the
divisive methods, the final result of merging produces a dendrogram which depicts
the merging sequence of communities. Cutting the dendrogram at any level, we ob-
tain a partition of network. All the components of the network partition are viewed
as the final communities.

Hierarchical clustering methods face two big challenges. The first one is the
choice of measurement to determine the pair of communities to be merged in ag-
glomerative methods or the community to be divided in divisive methods. Different
choices of measurement lead to different hierarchical methods for community detec-
tion. In the seminal paper on community structure [14], edge betweenness is used as
the measurement in a divisive method. Then, Newman and Girvan further propose
three kinds of edge betweenness, which are calculated according to shortest path,
random walk and current flow [32]. Furthermore, to avoid the high computational
cost of edge betweenness, Radicchi et al. proposed edge-clustering coefficient as the
measurement in divisive methods [29]. For agglomerative methods, Fortunato et al.
proposed to use the information centrality as the measurement [40]. Moreover, the
increase of modularity is widely used as the measurement in agglomerative meth-
ods [41, 42].

The second challenge is the choice of appropriate place to cut the dendrogram
produced by hierarchical clustering methods. To combat this problem, we need a
measurement to quantify the goodness of a network partition. The well-known mea-
sure is the modularity [32], which is proposed by Newman and Girvan when they
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study their divisive methods based on edge betweenness. The appearance of mod-
ularity greatly propels the development of community detection and motivates the
prosperity of modularity optimization method.

1.3.2.2 Modularity Optimization

Modularity is measurement to characterize modular property of network. Modular-
ity is defined with respect to the partition of network. A partition with high mod-
ularity is viewed as a good partition in the sense that there are more edges within
communities than expected.

Let est be the fraction of edges in the network that connect nodes in group s to
those in group t and as is the fraction of all the ends of edges that are attached to
nodes in group s. Then the modularity [32] is defined as

Q =
∑

s

ess − a2
s , (1.1)

where as = ∑
t est and ess is the fraction of edges which connect nodes in com-

munity s. Note that a2
s is the fraction of edges that connect nodes within group s

when the ends of edges are connected at random. Then the physical meaning of the
modularity Q is clear: give a partition, the modularity is the difference between the
real fraction of edges within communities and the expected fraction of edges within
communities when edges are placed at random.

The modularity can also be defined on edges rather than being defined on com-
munities (Eq. 1.1). This form of definition [42] can be written as

Q = 1

2m

∑

vw

[
Avw − kvkw

2m

]
δ(cv, cw), (1.2)

where Avw denotes whether there exists edge between nodes v and w, kv =∑
w Avw is the degree of node v, 2m = ∑

v kv is the total degree in the network,
cv denotes the community node v belongs to, and δcv,cw is 1 if cv = cw and 0 other-
wise. According this form of modularity, we can clearly see that the referenced null
model for modularity is the configuration model, which is widely-used to generate
random networks with the same degree sequence to the original network. More-
over, the modularity has been extended to weighted networks [41], directed net-
works [43, 44], bipartite networks [44, 45], and multiplex networks [46] by revising
the referenced null model with different constraints.

With the modularity, we can find the optimal partition having the maximum
modularity by searching the space composed of all the possible partitions of the
given network. This optimal partition reveals the community structure of networks,
i.e., each component of this partition is taken as one community. Therefore, the
community structure of network can be detected by the optimization of modular-
ity. Unfortunately, the optimization of modularity over all the possible partitions
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was proved to be a NP-hard problem [47]. Thus, scientists begin to find differ-
ent heuristic optimization method to find the suboptimal partition with respect to
the modularity. Examples include the greedy methods [41, 42, 48], the annealing
method [20], the extremal optimization method [49], the spectral methods [50, 51],
the genetic method [52], the mathematical programming method [53], the tabu-
search method [54], and the multi-step optimization methods [55].

Modularity optimization method is the most widely used method for community
detection. This kind of methods has gained great success on many specific real world
networks. However, the optimization method suffers several severe problems. These
problems pose big concerns on the reliability of the communities obtained by the
modularity optimization. The first problem is about the referenced random network.
Guimera et al. pointed out that the random networks generated by the configuration
model can also exhibit high modularity due to the fluctuation of randomness [56].
To combat this problem, Sales-Pardo et al. proposed to use the statistical signifi-
cance of modularity with respect to the networks generated by the referenced null
model [57]. The second problem is the resolution limit problem [58] pointed out by
Fortunato and Barthelemy. This problem tells us that the optimization of modularity
depends on the intrinsic scale of network. For communities which are beyond this
intrinsic scale cannot be detected by optimizing the modularity although these com-
munities have clear identities. To overcome this problem, several multi-resolution
methods are proposed using extended modularity [33, 54, 59]. The third problem for
modularity optimization is that the results of modularity optimization are heavily af-
fected by the degree distribution of network. Shen et al. proposed a rescaling remedy
for this problem and can well deal with the networks with highly heterogeneous de-
gree distribution [60]. In addition, as pointed out by Good et al., the modularity has
a ragged landscape and thus the optimization of modularity exhibits extreme de-
generacies: the optimization of modularity typically admits an exponential number
of distinct high-scoring solutions and typically lacks a clear global maximum [61].
This problem further affects the practical performance of modularity.

1.3.2.3 Network Dynamics

We have known that the modularity optimization method suffers several problems
and these problems limit the applicability of this method. Meanwhile, researchers
tried to understand the relationship between modularity and dynamic process on
networks. Thus, dynamics on network provide another possible way to investigate
the community structure [8, 9].

Arenas et al. studied the synchronization process on network and pointed out
the synchronization process reveals the topological scales of network [62]. Multiple
stable transients during the synchronization process correspond to multiscale com-
munity structure. They further pointed out the relationship between multiscale com-
munity structure and the spectrum of Laplacian matrix of network. By noticing that
the synchronization process is affected by the heterogeneous degree distribution,
Shen et al. studied the diffusion process on networks and reveals the relationship
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between the stable transients during diffusion process and the multiscale commu-
nity structure [63]. Then, network conductance is used to detect the community
structure associated with the diffusion dynamics on networks.

By investigating the random walk on networks, Rosvall et al. proposed the map
equation to characterize the expected length of random walk path on networks [34].
With the map equation, people can find the optimal partition which gives the short-
est description of random walk. The map equation method is well known as Infomap
and is one of the most accurate partition-based community detection methods. Be-
fore the Infomap, Rosvall et al. investigates the relationship between network com-
pression and community detection under the framework of information theory [64].

Raghavan et al. studied the label propagation process on networks and proposed
the label propagation algorithm to detect community structure [65]. At the begin-
ning of label propagation process, each node has a distinct label. Then each node
replaces its label with the label which is most widely hosted label among its neigh-
bors. Random selection is introduced to break a draw. When all the labels keep
unchanged, the label propagation process terminates. Then, the nodes with the same
label form one community. The label propagation process converges very fast and
thus the label propagation algorithm is a near linear algorithm for community de-
tection.

In summary, network dynamics is closely related to community structure of net-
works. It is critical to understand the structure and function of networks by revealing
community structure by investigating network dynamics. We look forward to seeing
more effective methods along this direction.

1.3.2.4 Overlapping Community Detection

For all the above community detection methods, one node belongs to one and only
one community. Because of such a constraint, the above methods cannot uncover
the overlapping community structure. Actually, for real word networks, communi-
ties are highly overlapped. For example, in social networks, one person can simul-
taneously belong to multiple social circles, depending on his/her family, friends,
professions, hobbies, and so on. In the network of words, several words have multi-
ple meanings and thus belong to more than one communities of word. In scientific
collaboration network, one researcher can collaborate with researchers from dif-
ferent research groups or even different countries. The nodes which participate in
more than one community play crucial role in the function of networks. They bridge
different communities and are the gatekeepers of their own communities. They fa-
cilitate the flow of information among different communities and are the potential
factors for community evolution.

The detection of overlapping communities was first studied in Ref. [23]. In this
seminal paper, a clique percolation method is described to uncover overlapping com-
munity structure. For clique percolation, a k-clique is rolled over the network to
other cliques with k − 1 common nodes. In this way, a community is composed of
all the k-cliques which can reach each other by rolling on network. Because that one
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node can participate more than one k-cliques, it is likely that one node simultane-
ously belongs to multiple communities. The clique percolation method require us to
find all the k-cliques in the network. This can be done in polynomial time complex-
ity. However, in general, people are inclined to find all the maximal cliques, which is
exponential in time complexity. In fact, finding all maximal cliques is more efficient
than finding all the k-cliques since most real world networks are sparse. Kumpula
et al. proposed a sequential algorithm for clique percolation [66]. This sequential
algorithm greatly improves the computational efficiency of clique percolation. Fur-
thermore, the clique percolation method is extended to weighted network [67], di-
rected network [68], and bipartite networks [69]. The clique percolation methods
have been successfully applied to biological networks, social networks and informa-
tion networks. However, for networks with very few cliques, the percolation method
is not applicable.

Many other methods are proposed to detect overlapping community structure
in networks. Lancichinetti et al. detected overlapping communities by community
expansion starting from different node seeds [70]. Baumes et al. gave a similar com-
munity expansion method with the difference at the choice of seed nodes [71]. Lee
et al. developed an overlapping community detection method by expanding from
maximal cliques instead of individual nodes [72]. By extending the label propa-
gation algorithm designed for non-overlapping community detection, Gregory pro-
posed the Community Overlap PRopagation Algorithm (COPRA) for overlapping
community detection [73]. Gregory et al. also designed method to detect overlap-
ping communities using extended edge betweenness [74]. Evans et al. proposed the
line graph and detect communities which overlap at the level of nodes [75]. Further-
more, Ahn et al. investigated the link-communities and they clustered links to detect
multiscale overlapping communities [76].

In recent years, probabilistic models attracted much research attention on over-
lapping community structure. This kind of methods focuses on the likelihood of
observing the network according to certain probabilistic model. Then, by maximiz-
ing the likelihood, the parameters of model are determined and these parameters
provide us information for overlapping community structure. Representative meth-
ods include the mixture model [35], the block models [77, 78] and the models based
on latent Dirichlet allocation [79].

1.3.2.5 Dynamic Community Detection

The above efforts for community detection are mainly devoted to the community
structure of a static network. Actually, the structure of network evolves all the time.
Accordingly, communities of network are also highly dynamic. However, the anal-
ysis of dynamic communities attracts only little attention. The main reasons are
two-fold. Firstly, it is still controversial how to detect the intrinsic communities in
static networks. The second reason lies in the difficulty of obtaining network data
with time stamp. Recently, with the increasing availability of timestamped data, it
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is possible to study the evolution of communities, including the birth, growth, con-
traction, merge, split and death of communities.

The pioneering work on dynamic community detection is conducted by Hopcroft
et al., who studied snapshots of the citation network obtained from the NEC CiteSeer
Database [80]. To distinguish the real evolution of communities from the fluctuation
on communities caused by the community detection methods, they only considered
the natural communities defined as the communities only slightly affected by per-
turbations of network structure. Then they match the natural communities across
different snapshots. In this way, they can track the evolution of communities in net-
work. In 2007, Palla et al. systematically analyzed the dynamic communities in the
network of mobile phone call and the scientific collaboration network [81]. They
used the clique percolation method to detect the overlapping communities in differ-
ent snapshot and compare the communities across different snapshots of network.
They found that large communities persist longer if their memberships dynamically
change while small communities keep stable if their members remain unchanged.
Lin et al. performed the analysis of dynamic communities by considering both the
quality of obtained communities in network snapshots and the consistency of com-
munity structure between successive network snapshots [82].

For dynamic community detection, most current work focuses on the snapshots
of networks. This methodology may fail to uncover the mechanism of community
evolution and predict the evolution of community. The evolution of explicit com-
munities in cyberspace provide us important data for analyzing the mechanism of
community evolution and designing algorithms to predict the evolution of these vir-
tual communities.

1.3.3 Community Validity

For the research on community structure, one critical problem is how to evaluate
and compare the effectiveness of different methods for community detection. This
problem includes two important aspects: how to construct the benchmark networks
with known community structure and how to design the measurements to compare
the known communities with the communities obtained by community detection
methods.

1.3.3.1 Benchmark Networks

Benchmark networks are used to compare the performance of different methods.
In the benchmark networks, the communities are known a priori. Thus, we need to
plant the communities into a network without communities. Furthermore, we need
parameters to control the ambiguity of community structure in benchmark networks.
Here, we describe two kinds of well-known benchmark networks: the GN bench-
mark networks [32] proposed by Girvan and Newman and the LFR benchmark [83]
networks proposed by Lancichinetti, Fortunato, and Radicchi.
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The GN benchmark is called the standard benchmark since it is widely-used
as the standard test for community detection methods. This benchmark is a re-
alization of the so-called planted l-partition model [84]. For a network gener-
ated by the planted l-partition model, all the nodes are partitioned into l groups
and each group has g nodes. Nodes of the same group are linked with a proba-
bility pin while nodes of different groups are linked with probability pout . Note
that each node group spans a network generated according to Erdős-Rényi ran-
dom graph model [6] with the link probability pin. The average degree of each
node is 〈k〉 = pin(g − 1) + poutg(l − 1). If pin lgpout, the intra-group link density
is larger than the inter-group link density and we say that the generated bench-
mark networks have a community structure, i.e., each group is a community. The
GN benchmark is a special case the planted l-partition model. In GN benchmark,
l = 4, g = 32 and the average node degree 〈k〉 = 16. According to these three
constraints, the probability pin and the probability pout are not independent. In
fact, we have pin + pout ≈ 1/2. For convenience, it is common to use parameters
zin = pin(g − 1) = 31pin and zout = poutg(l − 1) = 96pout. The parameter zin is
the expected internal degree of a node and zout is the expected external degree of a
node. Note that zin + zout = 16. Generally, the communities in the benchmark net-
work are well-defined when zout < 8. In this situation, the communities satisfy the
definition of strong community [29]. When zout > 8, the definition of strong commu-
nity is violated and we say that the benchmark network has no intrinsic community
structure. Fan et al. gave a weighted version of the GN benchmark [85]. Further-
more, Arenas et al. proposed the hierarchical version of the GN benchmark [62] and
Sawardecker et al. extend this benchmark to allow the communities overlap with
each other [86].

The GN benchmark plays crucial role in the development of community detec-
tion. However, for GN benchmark, the node degree and the community size are
both homogeneous. This is not consistent with the real world networks which ex-
hibit heterogeneous distributions of node degree and community size. To combat the
shortcoming of the GN benchmark, Lancichinetti et al. proposed the LFR bench-
mark [83]. In networks generated by the LFR benchmark, the node degree follows
a power law distribution with exponent γ and the community size follows another
power law distribution with exponent β . In addition, a mixing ratio parameter μ

is used to control the ambiguity of community structure in networks. Intuitively,
for each node, μ denotes the average fraction of links pointing to the nodes of the
other communities. The larger the parameter μ is, the more ambiguity the commu-
nity structure is. In sum, the LFR benchmark poses more severe test to community
detection methods than the GN benchmark because of the heterogeneous distribu-
tions of node degree and community size. Moreover, Lancichinetti et al. extended
the LRF benchmark to directed, weighted networks and communities are allowed to
overlap with each other [87].

Besides the synthetic benchmark networks, several real world networks are of-
ten used to test the effectiveness of community detection methods. These networks
include the karate club network first studied by Zachary [88], the network of bot-
tlenose dolphins living in New Zealand [89], the network of 115 football teams of
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American Universities [14], and the citation networks of papers published on Phys-
ical Review Letters [64].

1.3.3.2 Measurements

Measurements for community detection quantify the results of community detec-
tion methods. Here, we introduce three widely-used measurements for community
detection.

The first measurement is the fraction of nodes identified accurately by commu-
nity detection methods [14]. This simple measure is biased if the two communities
are merged by the community detection methods. To combat this problem, normal-
ized mutual information is proposed [90]. Both the obtained communities and the
known communities are taken as partitions of network. Normalized mutual infor-
mation compares the similarity between these two partitions. We denote the two
partitions as X = (X1,X2, . . . ,XnX

) and Y = (Y1, Y2, . . . , YnY
). Here, nX and

nY respectively denote the number of communities associated with the two par-
titions. In addition, we denote by n the number of nodes in network, by nX

i the
number of nodes in the community Xi , by nY

j the number of nodes in the commu-
nity Yj , and by nij the number of nodes shared by communities Xi and Yj . We
use a variable X to denote the community label of a randomly selected node ac-
cording to the partition X and use a variable Y to denote the community label of
a randomly selected node according to the partition Y . Then, the joint distribution
P(Xi,Yj ) = P(X = Xi,Y = Yj ) = nij /n. Thus, P(Xi) = P(X = Xi) = nX

i /n and
P(Yi) = P(Y = Yi) = nY

i /n. Then, the normalized mutual information is defined as

NMI(X ,Y ) = 2I (X,Y )

H(X) + H(Y)
, (1.3)

where the mutual information I (X,Y ) = H(X) − H(X|Y), then Shannon entropy
of X is H(X) = −∑

i P (Xi) logP(Xi) and the conditional entropy of X given Y

is H(X|Y) = −∑
ij P (Xi,Yj ) logP(Xi |Yj ). The normalized mutual information

is 1 is the two partitions X and Y are identical and 0 if the two partitions are
independent. The larger the normalized mutual information is, the more similar the
two partitions are.

As an alternative to the normalized mutual information, Meilă introduced the
variation of information [91], which is defined as

Var(X ,Y ) = H(X|Y) + H(Y |X). (1.4)

Compared to the normalized mutual information, the variation of information de-
fines a distance in the space of partitions. However, since the maximum of the vari-
ation of information is logn, the value of variation of information for networks with
different sizes cannot be compared with each other. For comparison, one could use
the normalized version, i.e., Var(X ,Y ) divided by logn as suggested by Karrer
et al. [92].



14 1 Community Structure: An Introduction

1.4 Concluding Remarks

In this chapter, we have introduced the background of network science and the de-
velopment in community detection. We know that community structure is a salient
structural characteristic of most real world networks. The community detection has
attracted much research attention from various fields. However, several open prob-
lems still exists and these problems provide the motivations of this book. These
problems include: 1) How to quantify the overlapping community structure in net-
works and how to simultaneously uncover the overlapping and hierarchical commu-
nity structure of networks? 2) How to detect the multiscale community structure in
networks with heterogeneous degree distribution? 3) How to uncover the commu-
nity structure associated with network dynamics? 4) How to infer the latent com-
munity structure according to observed links of networks, with only positive links
or with both positive and negative links? In the remaining parts, we will introduce
our research works on these problems.
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Chapter 2
Detecting the Overlapping and Hierarchical
Community Structure in Networks

2.1 Introduction

As described in the previous chapter, community structure is a common and im-
portant topological characteristic of many real world complex networks. Examples
include the World Wide Web, citations networks, various kinds of social and biolog-
ical networks, and many others [1–3]. In the past decade, community structure has
attracted much research attention from various scientific fields since it is crucial to
understand the structural and functional properties of networks [4–6]. Many meth-
ods have been proposed to identify the community structure of complex networks
[7–13]. The reader can refer to Ref. [14] for reviews.

These existing methods can be roughly classified into two categories in terms
of the form of their results, i.e., to form a partition or a cover of the network. The
first kind of methods produce a partition, i.e., each node belongs to one and only one
community and is regarded as equally important. Different from classical graph par-
tition problem, the number of communities and the size of each community are prior
unknown. Among this kind of methods, the most successful ones are the methods
based on the optimization of modularity [11, 15, 16], which is proposed by New-
man et al. as a quality function to measure the goodness of a network partition [9].
A high value of modularity indicates a significant community structure. Generally,
this kind of methods is suitable to understand the community structure of the whole
networks, especially for the networks with small sizes. However, the modularity
optimization methods also suffer several problems, e.g., the resolution limit prob-
lem [17, 18]. These problems pose concerns about the reliability of the community
structure detected by directly optimizing the modularity.

The second kind of methods aim to discover the node sets i.e., communities with
a high density of edges. In this case, overlapping is allowed, that is, some nodes may
belong to more than one community. Meanwhile, some nodes may be neglected as
subordinate nodes. Therefore, these methods result in an incomplete cover of the
network. Compared to the partition methods, this kind of methods are appropriate
to find the cohesive regions in the large scale networks. Ever since the problem of
detecting overlapping community structure is proposed by Palla et al., many meth-
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ods have been proposed [8, 19–26]. In [8], the community structure is uncovered by
k-clique percolation and the overlaps between communities are guaranteed by the
fact that one node can participate in more than one clique. However, the k-clique
method gives rise to an incomplete cover of network, i.e., some nodes may not be-
long to any community. In addition, the hierarchical structure cannot be revealed for
a given k. In [24], by introducing the concept of the belonging coefficients of each
node to its communities, the authors proposed a general framework for extending
the traditional modularity to quantify overlapping community structure. The method
provides a new idea to find overlapping community structure. However, the phys-
ical meaning of the belonging coefficient lacks a clear explanation. Furthermore,
the framework is hard to extend to large scale networks since it is difficult to find
an efficient algorithm to search the huge solution space. Recently, Evans et al. [25]
proposed a method to identify the overlapping community structure by partitioning
a line graph constructed from the original network. This method only allows the
communities to overlap at nodes. More important, there is no commonly accepted
standard to evaluate the goodness of a cover up to now.

In real networks, communities are usually overlapping and hierarchical [8, 26–
29]. Overlapping means that some nodes may belong to more than one community.
Hierarchical means that communities may be further divided into sub-communities.
The two kinds of existing methods, as mentioned above, investigate these two phe-
nomena separately. The first kind of methods can be used to explore the hierarchi-
cal community structure. However, they are unable to deal with overlaps between
communities. The second kind of methods can uncover overlapping community
structure of networks, but they are incapable of finding the hierarchy of commu-
nities. Recently, Lancichinetti et al. make a pioneering attempt on the detection of
both overlapping and hierarchical community structure in complex networks [26].
They try to detect the overlapped communities in the network based on the local
optimization of a fitness function. Their method can uncover the hierarchical rela-
tion between these overlapped communities around a particular node. The remained
problem lies in that the detection of the hierarchy of all overlapped communities in
the network is not guaranteed due to the random choice of seed nodes.

In this chapter, we focus on the problem of detecting the overlapping and hier-
archical community structure simultaneously. By taking maximal cliques as basic
building blocks of communities, we propose an algorithm EAGLE (agglomerativE
hierarchicAl clusterinG based on maximaL cliquE) to detect community structure of
networks. The overlaps among different maximal cliques guarantee the overlaps be-
tween communities and the hierarchy of these overlapped communities is uncovered
by the process of agglomerative hierarchical clustering. Then, by extending the mea-
surement for network partition, i.e., modularity, we propose a measurement Qc to
evaluate the quality of a cover of network. Then, we can find the overlapping com-
munity structure by directly optimizing the proposed measurement. Furthermore,
we propose a method to construct a maximal clique network for a given network.
With the maximal clique network at hand, finding the overlapping community struc-
ture by optimizing the new measurement Qc on the original networks is equivalent
to optimizing the standard modularity on the maximal clique network. In this way,
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any method based on modularity optimization can be directly used to uncover the
overlapping community structure.

2.2 EAGLE: Detecting the Overlapping and Hierarchical
Community Structure

In this chapter, the algorithm EAGLE is presented to uncover both the overlapping
and hierarchical community structure of networks. This algorithm deals with the
set of maximal cliques and adopts an agglomerative framework. The effectiveness
is then demonstrated by applications to two real world networks, namely the word
association network and the scientific collaboration network.

2.2.1 The Algorithm

Before we introduce the details of the algorithm EAGLE, we use a schematic net-
work to illustrate what EAGLE can do and compare it with the representative al-
gorithms of the two kinds of existing methods introduced in the previous section.
Figure 2.1(a) depicts the schematic network. This network is constructed according
to the schematic network in [8], which has overlapping community structure. To
construct the hierarchy of the overlapped communities, we remove the edge con-
necting nodes 9 and 13 and add two edges, one connecting 10 and 15 and the other
one connecting 10 and 13. Figure 2.1(b) shows the community structure found by
Newman’s fast algorithm [11], which is the representative algorithm of partitioning
network based on modularity optimization. Three communities are found when ap-
plying the algorithm to the schematic network. The hierarchy of communities can
be revealed by applying the algorithm to each community further. For example, one
of the three communities is divided into two sub-communities. However, overlaps
between communities are not allowed. Figure 2.1(c) demonstrates the overlapping
community structure found by the k-clique algorithm [8], which is the representa-
tive algorithm producing a cover of network. Unfortunately, this algorithm cannot
reveal the hierarchy of community. Figure 2.1(d) shows the hierarchical and over-
lapping community structure found by the algorithm EAGLE. We can see that the
algorithm EAGLE provides a possible way to investigate a more complete picture
of the community structure.

Now we turn to the basic ideas behind the algorithm EAGLE. Generally speak-
ing, a community can be regarded as a node set within which the nodes are more
likely connected to each other than to the rest of the network. This indicates that a
community usually has relatively high link-density. We know that the link-density
of a clique is highest among all kinds of node subsets of a network. Furthermore,
a densely-linked community usually contains a large clique, which could be re-
garded as the core of the community. Based on this observation, the algorithm EA-
GLE is proposed as an agglomerative hierarchical clustering algorithm to investigate
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the community structure. Different from traditional agglomerative algorithms [11],
the algorithm deals with the set of maximal cliques rather than the set of nodes.

A maximal clique is a clique which is not a subset of any other cliques. In the
algorithm EAGLE, we need to first find out all the maximal cliques in the network.
This can be done by many efficient parallel algorithms. Here we choose the well-
known Bron-Kerbosch algorithm [31] for its efficiency and its simplicity in imple-
mentation. Note that not all maximal cliques are taken into account. The maximal
cliques, whose nodes are from some other larger maximal cliques, are called subor-
dinate maximal cliques. For example, in Fig. 2.1, nodes 4 and 23 form a subordinate
maximal clique. Because node 4 is from another larger maximal clique {1,2,3,4,5,

6} and node 23 is also from other larger maximal cliques, including {18,20,21,23},
{18,20,22,23} and {18,19,22,23}. Subordinate maximal cliques may mislead our
algorithm and thus are discarded. Most subordinate maximal cliques have small
sizes. Thus, we can discard them by setting a threshold k and neglecting all the
maximal cliques with the size smaller than k. This simple tactic may also dis-
card some non-subordinate maximal cliques. The higher the value of k is, the more
non-subordinate maximal cliques are discarded by mistake. On the other hand, the
smaller the value of k is, the more subordinate maximal cliques are remained. In real
world networks, the threshold k typically takes value between 3 and 6. As to the net-
work in Fig. 2.1, both 3 and 4 are appropriate threshold values. As to the networks
used in Sect. 2.2.2, 4 is demonstrated to be an appropriate threshold [8]. After ne-
glecting the maximal clique with the size smaller than the threshold k, some nodes
do not belong to any remaining maximal cliques. We call these nodes as subordinate
nodes.

The algorithm EAGLE has two stages. In the first stage, a dendrogram is gener-
ated. In the second stage, we choose an appropriate cut which breaks the dendro-
gram into communities. The first stage of the algorithm EAGLE can be described
as follows:

1. Find out all maximal cliques in the network. Neglect subordinate maximal
cliques. The remainders are taken as the initial communities. Each subordinate
node is also taken as an initial community comprising the sole node. Calculate
the similarity between each pair of communities.

2. Select the pair of communities with the maximum similarity, incorporate them
into a new one and calculate the similarity between the new community and other
communities.

3. Repeat step 2 until only one community remains.

In the algorithm, the similarity S between two communities C1 and C2 is defined
as

S = 1

2m

∑

v∈C1,w∈C2,v �=w

[
Avw − kvkw

2m

]
, (2.1)

where Avw is the element of adjacency matrix of the network (here, we only con-
sider undirected, unweighted networks). It takes value 1 if there is an edge between
node v and node w and 0 otherwise. The quantity m = 1

2

∑
vw Avw is the total num-

ber of edges in the network and kv is the degree of node v.
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Fig. 2.2 Illustration for the
process of the algorithm
EAGLE. This illustration is
according to the schematic
network in Fig. 2.1. The
bottom part is a dendrogram.
The leaf nodes correspond to
the non-subordinate maximal
cliques. The label of each leaf
node shows the nodes
belonging to it. The (red)
vertical dashed line is a cut
through the dendrogram and
it gives the best cover of the
network. The top part of the
figure is a graph which
illustrates the curve of EQ
corresponding to each cover
of the network. The
threshold k is set to be 4.
Reprinted from Ref. [30],
Copyright 2009, with
permission from Elsevier

Similar to the fast algorithm in [11], the process of our algorithm corresponds to a
dendrogram, which shows the order of the amalgamations of communities. Any cut
through the dendrogram produces a cover of the network. As an illustration, Fig. 2.2
shows the dendrogram generated by our algorithm when applied to the network in
Fig. 2.1.

The task of the second stage of the algorithm EAGLE is to cut the dendrogram.
To determine the place of the cut, a measurement is required to judge the quality
of a cover. In [24], an extension of modularity is proposed to evaluate the goodness
of overlapped community decomposition. Here, for simplicity, we propose another
extension of modularity, namely EQ. In Fig. 2.2, the cut gives the best cover with
the maximum value of EQ. The extended modularity is defined as

EQ = 1

2m

∑

i

∑

v∈Ci,w∈Ci

1

OvOw

[
Avw − kvkw

2m

]
, (2.2)

where Ov is the number of communities to which node v belongs.
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Note that EQ reduces to Q in [9] when each node belongs to only one community
(readers can refer to Ref. [15] for details), and EQ is equal to 0 when all nodes
belong to the same community. In addition, it will be shown later in Sect. 2.2.2, a
high value of EQ indicates a significant overlapping community structure.

Alike to modularity, the extended modularity suffers a resolution limit beyond
which no modular structure can be detected even though these modules might have
their own identities. For the algorithm EAGLE, however, these modules can be still
detected by further applying the algorithm to each community found until none of
them can be divided into smaller ones. Thus, we obtain a hierarchy of overlapping
communities which reveals the community structure of network more completely.

Now we analyze the time complexity of the algorithm. Let n be the number of
nodes, s be the number of maximal cliques in the initial state of the algorithm, and h

be the number of pair of maximal cliques which are neighbors (connected by edges
or overlap with each other). We firstly consider the first stage of the algorithm. In
step 1, O(n2) operations are needed to calculate the similarity between each pair
of initial communities. In step 2, we only consider the pairs of communities which
are neighbors. Each selection costs h operations and each time of join costs O(n)

operations at most. Totally, we carry on a maximum of s − 1 join operations. Thus
the first stage of the algorithm takes at most O(n2 + (h + n)s) operations. As to the
second stage, we need to calculate the value of EQ corresponding to each cover. In
our implementation, we calculate the value of EQ for the initial cover and update
it after each join of two selected communities into a new one. Each time of update
costs at most n2 operations. Hence, the second state of the algorithm takes at most
O(n2s) operations. In addition, we need to find out all the maximal cliques in the
network. It is widely believed to be a non-polynomial problem. However, for real
world networks, finding all the maximal cliques is easy due to the sparseness of these
networks. Compared to the Newman’s fast algorithm and the k-clique algorithm,
the algorithm EAGLE is time-consuming. We leave it as a future work that how to
improve the speed of EAGLE.

2.2.2 Applications

In this subsection, we apply the algorithm EAGLE to two real world complex net-
works, the word association network and the scientific collaboration network. The
results show that EAGLE can discover new knowledge and insights underlying these
networks.

The test data of the two networks are from the demo of the CFinder [32].1 The
two networks comprise 7207,16662 nodes and 31784,22446 edges, respectively.
The average clustering coefficients [33] are approximately 0.15 and 0.19, which
indicate that these networks have significant community structures in general.

1CFinder is a free software for finding overlapping dense groups of nodes in networks, based on
the clique percolation method. URL: www.cfinder.org.

http://www.cfinder.org
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The word association network is constructed from the South Florida Free As-
sociation norms list. The original network is directed and weighted. The weight of
a directed link from one word to another indicates the frequency that the people
in the survey associated the end point of the link with its start point. The directed
links are replaced by undirected ones with a weight equal to the sum of the weights
of the corresponding two oppositely directed links. Furthermore, the links with the
weight less than 0.025 are deleted. The scientific collaboration network is from the
co-authorship network of Los Alamos e-print archives. Each article in the archive
between April 1998 and February 2004 contributes the value 1/(n−1) to the weight
of the link between every pair of its n authors. The link with the weight less than
1.0 is omitted.

In the word association network, totally 17 communities are found by our
algorithm—see Fig. 2.3(a), left panel. Among these communities, 63 of 136 pos-
sible pairs of communities overlap with each other. To investigate what is correlated
to the community structure, we apply our algorithm to each of these communities
again. The sub-community structure of one community is given in Fig. 2.3(a), mid-
dle panel. Each of these sub-communities has certain correlation with the semantic
meaning of words. For example, most of the words in the community with size 112
are related to the family of animals in Africa. This community is explored further
and four communities are found, shown in Fig. 2.3(a), right panel. Each community
is associated with animals from the same family, namely rodentia, felidae & pri-
mates, cervidae & caprinae, and equidae respectively. The details of one community
are also illustrated in Fig. 2.3(a), right panel. Two large communities correspond to
words associated with animals from cervidae and caprinae respectively. The over-
lapped word Animal acts as a bridge between the two communities. Three small
communities comprise peripheral words.

Applying our algorithm to the scientific collaboration network, we obtain totally
1754 communities—see Fig. 2.3(b), left panel, with the corresponding high value
of EQ ≈ 0.86. Three large communities contain 23.4 % of all the nodes, while the
others are relatively small. The three large communities correspond closely to sub-
ject subareas: the biggest one mainly to mes-hall and str-el, the second biggest one
to str-el and supr-con, and the other to stat-mech, dis-nn and soft. We further apply
the algorithm to one community and it is broken down into 26 sub-communities—
depicted in Fig. 2.3(b), middle panel. There appears to be a correlation between the
sub-community structure and the regional divisions of the scientific researchers. For
example, most of the members of the community with size 166 work in Europe.
More specific regional information can be obtained when applying the algorithm
to this community. The biggest one and its sub-community structure are given in
Fig. 2.3(b), right panel. We can see that the author G. Parisi (who is well known for
having made significant contributions in different fields of physics) acts as a hub in
the community. Different communities can be associated with his different fields of
interest.

Now, we compare the algorithm EAGLE with Newman’s fast algorithm and the
k-clique algorithm by applying them to the scientific collaboration network. Fig-
ure 2.4 shows that the hierarchical community structure found by Newman’s fast
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Fig. 2.5 The overlapping
community structure around
the node G. Parisi in the
scientific collaboration
network. Different
communities are rendered in
different colors (or markers
for print). The overlapping
nodes and edges between
communities are colored in
red. Here, k is set to be 4.
Reprinted from Ref. [30],
Copyright 2009, with
permission from Elsevier

algorithm. The number of communities at each level of the hierarchy is almost iden-
tical to that found by the algorithm EAGLE although the size of each community is
somewhat different. Compare the left panel of Fig. 2.4 with that of Fig. 2.3(b), one
community disappears. Actually, it is divided into several other smaller communi-
ties, which are not depicted. As to the right panels, the details of communities were
given. The node G. Parisi, acting as a hub in Fig. 2.3, only appears in one community
in Fig. 2.4. The reason is that Newman’s algorithm gives rise to partitions of net-
work, while the algorithm EAGLE allows overlaps between communities. Note that
overlap between communities is a very common phenomenon in real networks and
may contribute to the evolvement of communities and the dynamics of networks.

Figure 2.5 shows the overlapping community structure around the node G. Parisi
in the scientific collaboration network. Compare to Fig. 2.3, both the algorithm EA-
GLE and the k-clique algorithm can find the overlapping community structure, al-
though the overlapped communities found by the two algorithms are somewhat dif-
ferent. However, the algorithm EAGLE can give the hierarchy of these overlapped
communities compared to the k-clique algorithm. The hierarchy of communities is
useful to understand the community structure of real world networks.

2.3 Extending Modularity to Quantify the Overlapping
Community Structure

In this section, a measure for the quality of a cover is proposed to quantify the over-
lapping community structure referred as Qc (quality of a cover). With the measure
Qc , the overlapping community structure can be identified by finding an optimal
cover, i.e., the one with the maximum Qc. The Qc is based on a maximal clique
view of the original network. A maximal clique is a clique (i.e. a complete sub-
graph) which is not a subset of any other clique in a graph. The maximal clique view
is according to a reasonable assumption that a maximal clique cannot be shared by
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two communities due to that it is highly connective. To find an optimal cover, we
construct a maximal clique network from the original network. We then prove that
the optimization of Qc on the original network is equivalent to the optimization of
the modularity on the maximal clique network. Thus the overlapping community
structure can be identified through partitioning the maximal clique network with
an efficient modularity optimization algorithm, e.g., the fast unfolding algorithm
in [34]. The effectiveness of the measure Qc is demonstrated by extensive tests on
both the artificial networks and the real world networks with known community
structure and the application to the word association network.

2.3.1 Quantifying the Overlapping Community Structure

Before introducing how to quantify the overlapping community, we first illustrate
the representation of overlapping community. Figure 2.6 shows an example network
with overlapping community structure. The overlapping community structure can
be represented by a cover of network. A cover of network is defined as a set of
clusters such that each node is assigned to one or more clusters and no cluster is
a proper subset of any other cluster. As to the network in Fig. 2.6, the overlapping
community structure can be represented by the cover {{1,2,3,4,5,6}, {3,7,8,9,

10,11,12,13}, {10,11,12,14,15,16,17}, {18,19,20,21,22,23,24}}.
We have known that the overlapping community structure can be represented

as a cover of network instead of a partition of network. Therefore, the overlapping
community structure can be quantified through a measure of a cover of network.

As well known, the modularity was used to measure the goodness of a partition
of network. Given an un-weighted, undirected network G(E,V ) and a partition P

of the network G, the modularity can be formalized as

Q = 1

L

∑

c∈P

∑

vw

δvcδwc

(
Avw − kvkw

L

)
, (2.3)

Fig. 2.6 A schematic
network with overlapping
community structure.
Communities are
differentiated by colors and
the overlapping regions are
emphasized in red. The edges
between communities are
colored in gray. Reprinted
from Ref. [35], Copyright
2009, with permission from
IOP Publishing and SISSA
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where A is the adjacency matrix of the network G, L = ∑
vw Avw is the total weight

of all the edges, and kv = ∑
w Avw is the degree of the node v.

In Eq. 2.3, δvc denotes whether the node v belongs to the community c. The
value of δvc is 1 when the node v belongs to the community c and 0 otherwise. For
a cover of network, however, a node may belong to more than one community. Thus
δvc needs to be extended to a belonging coefficient αvc, which reflects how much
the node v belongs to the community c.

With the belonging coefficient αvc, the goodness of a cover C can be measured
by

Qc = 1

L

∑

c∈C

∑

vw

αvcαwc

(
Avw − kvkw

L

)
. (2.4)

The idea of the belonging coefficient was proposed in [24]. Its authors also
pointed out that the belonging coefficient should satisfy a normalization property.
This property is formally written as

0 ≤ αvc ≤ 1, ∀v ∈ V, ∀c ∈ C (2.5)

and
∑

c∈C

αvc = 1. (2.6)

Equations 2.5 and 2.6 only give the general constraints on αvc , which lead to
such a huge solution space that the enumeration of all the solutions is impractical.
To reduce the solution space and make the problem tractable, we introduce an ad-
ditivity property for the belonging coefficient: the belonging coefficient of a node
to a community c is the sum of the belonging coefficients of the node to all of c’s
sub-communities.

For example, we assume that C = {c1, c2, . . . , cr−1, cr , . . . , cs, cs+1, . . . , cn} is
a cover of the network G and C′ = {c1, c2, . . . , cr−1, cu, cs+1, . . . , cn} is another
cover of G. The difference between C′ and C is that the community cu is the union
of the communities cr , . . . , cs . The additivity property of belonging coefficient can
then be formally denoted as

αvcu =
s∑

i=r

αvci
. (2.7)

The belonging coefficient αvc reflects how much a node v belongs to a commu-
nity c. Intuitively, it is proportional to the total weight of the edges connecting the
node v to the nodes in the community c, i.e.,

αvc ∝
∑

w∈V (c)

Avw, (2.8)

where V (c) denotes the set of nodes belonging to community c. Note that the addi-
tivity property of belonging coefficient requires that communities are disjoint from



32 2 Detecting the Overlapping and Hierarchical Community Structure

a proper view of the network. Therefore, we introduce the maximal clique view to
achieve this purpose. We define αvc as the form

αvc = 1

αv

∑

w∈V (c)

Oc
vw

Ovw

Avw, (2.9)

where Ovw denotes the number of maximal cliques containing the edge (v,w) in
the whole network, Oc

vw denotes the number of maximal cliques containing the edge
(v,w) in the community c, and αv is a normalization term denoted as

αv =
∑

c∈C

∑

w∈V (c)

Oc
vw

Ovw

Avw. (2.10)

Obviously, the definition of αvc in Eq. 2.9 satisfies the normalization property.
It also satisfies the additivity property if we assume that each maximal clique only
belongs to one community. This assumption is reasonable since a maximal clique
is highly connective that any two communities sharing a maximal clique should be
combined into a single one.

With Eqs. 2.4 and 2.9, we obtain the detailed form of Qc as a measure to the
quality of a cover of network. Note that when a cover degrades to a partition, Qc be-
comes the modularity Q in [15] accordingly. In addition, Qc = 0 when all nodes
belong to the same community, and it will be shown later in Sect. 2.3.4 that a high
value of Qc indicates a significant overlapping community structure.

2.3.2 Identifying the Overlapping Community Structure

With the measure Qc , the overlapping community structure of network can be iden-
tified by finding the optimal cover with maximum Qc . To find the optimal cover, we
construct a maximal clique network from the original network. Then the overlap-
ping community structure can be identified through partitioning the maximal clique
network.

2.3.2.1 Construction of the Maximal Clique Network

Given an un-weighted, undirected network G, a corresponding maximal clique net-
work G′ can be constructed through the following method.

The maximal clique network G′ is constructed by defining its nodes and edges.
We first find out all the maximal cliques in G. We can simply take all these maximal
cliques as nodes of G′. In practice, however, we observe that some maximal cliques
would not be so highly connective if their sizes are too small. Such a maximal clique
either lies between different communities (e.g., the maximal cliques {4,23} and
{5,22} in the network shown in Fig. 2.6) or connects a node to the whole network
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Fig. 2.7 Illustration for the construction process of the maximal clique network. Here, (a) The
original example network. (b) A cover of the original network. In this cover, each maximal clique
is a cluster and each subordinate node forms a cluster consisting of only one node. (c) The belong-
ing coefficient of each node to its corresponding clusters in the cover. (d) The maximal clique net-
work constructed from the example network. Here the parameter k = 3. Reprinted from Ref. [35],
Copyright 2009, with permission from IOP Publishing and SISSA

(e.g., the maximal clique {8,11} in the network shown in Fig. 2.7(a)). To deal with
these small maximal cliques, we introduce a threshold k. Specifically, given the
parameter k, we only refer to those maximal cliques with the size no smaller than k

as the maximal cliques, and refer to those with the size smaller than k as subordinate
maximal cliques. We then denote the nodes only belonging to subordinate maximal
cliques as subordinate nodes. In this way, each maximal clique or subordinate node
in the original network G is taken as one node of G′.

Note that all the subordinate nodes and the maximal cliques form a cover C of
the original network G. For a subordinate node v and a cluster c in the cover C, the
value of αvc is defined to be 1.0 when v belongs to the cluster c and 0.0 otherwise.
As to other nodes, αvc can be obtained according to Eq. 2.9.

Now we can define the edge of the maximal clique network G′ by defining its
adjacency matrix B . Let mx denote the set of the original network’s nodes corre-
sponding to the xth node in G′. The element of B is defined as

Bxy =
∑

vw

αvmx αwmy Avw (2.11)

and the strength (degree) of the xth node

sx =
∑

y

Bxy =
∑

v

αvmx kv. (2.12)
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For clarity, Fig. 2.7 illustrates the construction process of the maximal clique
network from an example network with the parameter k = 3. Figure 2.7(b) shows
the subordinate nodes and the maximal cliques. Each of them becomes a node in the
resulting maximal clique network. For example, the maximal clique {1,2,4} corre-
sponds to the node a and the subordinate node {5} corresponds to the node d . Each
of these maximal cliques or subordinate nodes is a cluster in a cover C of the orig-
inal network. Their belonging coefficients corresponding to the cover C are shown
in Fig. 2.7(c). According to these belonging coefficients and Eq. 2.11, the weight of
each edge of the maximal clique network is obtained. Take the edge connecting the
nodes a and b as an example. As known, the node a corresponds to the maximal
clique {1,2,4} and the node b corresponds to the maximal clique {1,3,4}. Using
Eq. 2.11, the weight of this edge is α1aα3b +α1aα4b +α2aα1b +α2aα4b +α4aα1b +
α4aα3b = 0.5 + 0.25 + 0.5 + 0.5 + 0.25 + 0.5 = 2.5.

The constructed maximal clique network is a weighted network though the orig-
inal network is un-weighted. The total weight L′ of all the edges in the maximal
clique network is equal to the total weight (number) L of edges in the original net-
work. The proof is

L′ =
∑

xy

Bxy

=
∑

xy

∑

vw

αvmx αwmy Avw

=
∑

vw

Avw

∑

x

αvmx

∑

y

αwmy

=
∑

vw

Avw

= L. (2.13)

Each node in the original network corresponds to more than one node in the
maximal clique network. For example, in Fig. 2.7, the node 1 corresponds to two
nodes a and b in the maximal clique network. Thus, a partition of the maximal
clique network can be mapped to a cover of the original network, which holds the
information about the overlapping community structure of the original network.

2.3.2.2 Finding the Overlapping Community Structure

Now we investigate the overlapping community structure of the original network
through partitioning its corresponding maximal clique network. To find the natural
partition of a network, the optimization of modularity is the widely used technique.
The partition with the maximum modularity is regarded as the optimal partition of
network. We employ the algorithm proposed in [34] to partition our maximal clique
network. As an example, Fig. 2.8 shows the partition of a maximal clique network.
Different parts of the partition are differentiated by shapes or colors.
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Fig. 2.8 The maximal clique network constructed from the schematic network in Fig. 2.6. The
label near each node shows its corresponding nodes in the original network. The width of line
indicates the weight of the corresponding edge. The self-loop edge of each node is omitted and
its width is reflected by the volume of the associated circles, squares or triangles. In addition, the
optimal partition of the maximal clique network is also depicted. The communities in this partition
are differentiated by shapes. Furthermore, the circle-coded community can be partitioned into two
sub-communities. The four communities are shown in different colors, which are identical to the
communities depicted in Fig. 2.6. Here k is 4. Reprinted from Ref. [35], Copyright 2009, with
permission from IOP Publishing and SISSA

As mentioned above, each partition of the maximal clique network corresponds
to a cover of the original network and the cover tells us the overlapping community
structure. The key problem lies in that whether the optimal partition of the maximal
clique network corresponds to the optimal cover of the original network. To answer
this question, we analyze the relation between the modularity of the maximal clique
network and the Qc of the original network.

Let P = {p1,p2, . . . , pl} be a partition of the maximal clique network and C =
{c1, c2, . . . , cl} be the corresponding cover of the original network. Here, l is the
size of P or C , i.e., the number of communities. Using modularity, the quality of
the partition P can be measured by

Q = 1

L′
∑

i

∑

x,y∈pi

(
Bxy − sxsy

L′

)
. (2.14)

Using Eqs. 2.11 and 2.12, we have

Q = 1

L′
∑

i

∑

x,y∈pi

(∑

vw

αvmx αwmy Avw − 1

L′
∑

v

αvmx kv

∑

w

αwmy kw

)
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= 1

L′
∑

i

∑

x,y∈pi

∑

vw

αvmx αwmy

(
Avw − kvkw

L′

)

= 1

L

∑

i

∑

vw

αvci
αwci

(
Avw − kvkw

L

)

= Qc. (2.15)

Equation 2.15 tells us that the optimization of the Qc on the original network
is equivalent to the optimization of the modularity on the maximal clique network.
Thus we can find the optimal cover of the original network by finding the optimal
partition of the corresponding maximal clique network. The optimal cover reflects
the overlapping community structure of the original network.

2.3.3 Discussions

As to our method, it is important to select an appropriate parameter k. On one hand,
the parameter k affects the constituent of the overlapping regions between commu-
nities. According to the definition to subordinate nodes, they are excluded from the
overlapping regions. Thus the larger the parameter k, the less the number of nodes
which can occur in the overlapping regions. When k → ∞, the maximal clique net-
work is identical to the original network and no overlap is identified. On the other
hand, since the subordinate maximal cliques are not so highly connective, the pa-
rameter k should not be too small in practice. The choice of the parameter k depends
on the specific networks. Observed from many real world networks, the typical value
of k is often between 3 and 6. Additionally, as to the networks where larger cliques
are rare, our method is close to the traditional modularity-based partition methods.
In this case, rare overlaps will be found.

Both the traditional modularity and the Qc are based on the significance of
link density in communities compared to a null-model reference network, e.g., the
configuration model network. However, differently from the traditional modularity
which requires that each node can only belong to one community, Qc requires that
each maximal clique can only belong to one community. In this way, Qc takes ad-
vantage of both the local topological structure (i.e., the maximal clique) and the
global statistical significance of link density.

The same to the traditional modularity, however, the measure Qc also suffers the
resolution limit problem [17], especially when applied to large scale complex net-
works. Recently, some methods [36] have been proposed to address the resolution
limit problem of modularity. These methods are also appropriate to the measure Qc .

Now we turn to the efficiency of our method. It is difficult to give an analytical
form of the computational complexity of our method. Here we only discuss what in-
fluences the efficiency of our method. Our method consists of three stages, finding
out the maximal cliques, constructing the maximal clique network and partitioning
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the maximal clique network. As to the first stage, we need to find out all the max-
imal cliques in the network. It is widely believed to be a non-polynomial problem.
However, for real world networks, finding all the maximal cliques is easy due to the
sparseness of these networks. The computational complexity of the second stage
depends on the number of edges in the original networks. Finally, the partition stage
rests with the number of the maximal cliques and subordinate nodes. Taken together,
our method is very efficient on real world networks.

In addition, as mentioned above, the overlapping community structure can be
identified by the optimization of Qc . Similarly, iteratively applying this method to
each community, we can investigate the sub-communities correspondingly. In this
way, a rigid hierarchical relation of overlapping communities can be identified from
the whole network.

2.3.4 Results

In this section, we extensively test our method on the artificial networks and the real
world networks with known community structure. Then we apply our method to a
large real world complex network, which has been shown to possess overlapping
community structure.

2.3.4.1 Tests on Artificial Networks

To test our method, we utilize the benchmark proposed in [37]. It provides bench-
mark networks with heterogeneous distributions of node degree and community
size. In addition, it allows for the overlaps between communities. This benchmark
poses a much more severe test to community detection algorithms than Newman’s
standard benchmark [9]. There are many parameters to control the generated net-
works in this benchmark, the number of nodes N , the average node degree 〈k〉, the
maximum node degree max_k, the mixing ratio μ, the exponent of the power-law
node degree distribution t1, the exponent of the power-law distribution of commu-
nity size t2, the minimum community size min_c, the maximum community size
max_c, the number of overlapped nodes on, and the number of memberships of
each overlapped node om. In our tests, we use the default parameter configuration
where N = 1000, 〈k〉 = 15, max_k = 50, t1 = 2, t2 = 1, min_c = 20, max_c = 50,
on = 50 and om = 2. By tuning the parameter μ, we test the effectiveness of our
method on the networks with different fuzziness of communities. The larger the
parameter μ, the fuzzier the community structure of the generated networks is.

To evaluate the effectiveness of an algorithm for the identification of overlapping
community structure, a measure is needed to compare the cover found by the algo-
rithm with the ground truth. In [26], a measure is proposed to compare two covers,
which is an extension form of variation of information. The more similar two cov-
ers are, the higher the value of the measure is. Here, we adopt it to compare the
overlapping community structure found by our method and the known overlapping
community structure in the benchmark networks.
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Fig. 2.9 Test of our method on the benchmark networks. The parameter k in the legend corre-
sponds to the parameter k in our method. The threshold μ = 0.5 (dashed vertical line in the figure)
marks the border beyond which communities are no longer defined in the strong sense [10], i.e.,
such that each node has more neighbors in its own community than in the others. Each point cor-
responds to an average over 100 graph realization. Reprinted from Ref. [35], Copyright 2009, with
permission from IOP Publishing and SISSA

Figure 2.9 shows the results of our method with k = 4,5,6 on the benchmark
networks. Our method gives rather good results when the μ is smaller than 0.5. All
of the values of the variation of information are above 0.8. Note that in these cases,
communities are defined in the strong sense [10], i.e., each node has more neighbors
in its own community than in the others. We also test other settings of k which are
larger than 6, and find similar results.

2.3.4.2 Tests on Real World Networks

Our first real world network for test is Zachary’s karate club network [38], which
is widely used as a benchmark for the methods of community identification. This
network characterizes the social interactions between the individuals in a karate
club at an American university. A dispute arose between the club’s administrator
and its principal karate teacher and as a result the club eventually split into two
smaller clubs, centered around the administrator and the teacher respectively. The
network and its fission is depicted in Fig. 2.10. The administrator and the teacher
are represented by nodes 1 and 33 respectively.

Feeding this network into our method with the parameter k = 4, we obtain the re-
sult shown in Fig. 2.10. Similar to many existing community detection methods, our
method partitions the network into four communities. This partition corresponds to
the modularity with the value 0.417, while the real partition into two sub-networks
has a modularity 0.371. Actually, no node is misclassified by our method. The real
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Fig. 2.10 The network of the
karate club studied by
Zachary [38]. The real social
fission of this network is
represented by two different
shapes, circle and square.
The different colors show the
partition obtained by our
method with the parameter
k = 4. Reprinted from
Ref. [35], Copyright 2009,
with permission from IOP
Publishing and SISSA

split of the network can be obtained exactly by pair-wise merge of the four commu-
nities found by our method.

We also note that no overlaps are found when k = 4. Actually, no overlaps can
be found when k is no smaller than 4 as to this network. Overlaps between com-
munities emerge when the parameter k is set to 3. The value of Qc corresponding
to the resulting cover is 0.385 and in total three overlapped communities are found
by our method. They are {1,5,6,7,11,17}, {1,2,3,4,8,9,12,13,14,18,20,22}
and {3,9,10,15,16,19,21,23,24,25,26,27,28,29,30,31,32,33,34}. The over-
lapping regions consist of three nodes, being 1, 3 and 9. Each of them is shared by
two communities. Such nodes are often misclassified by traditional partition-based
community detection methods. Except the nodes occurring in the overlapping re-
gions, other nodes reflects the real split of the network.

We also test our method on another real world network, a social network of 62
bottlenose dolphins living in Doubtful Sound, New Zealand. The network was con-
structed by Lusseau [39] with ties between dolphin pairs being established by obser-
vation of statistically significant frequent association. The network splits naturally
into two groups, represented by the squares and circles in Fig. 2.11.

By applying our method with k = 4 to this network, four communities are ob-
tained, denoted by different colors in Fig. 2.11. The green community is connected
loosely to the other three ones. Regarding the three circle-denoted communities as
a sole community, it and the green community correspond to the known division
observed by Lusseau [39]. Furthermore, the three circle-denoted communities also
correspond to a real division among these dolphins. The further division appears
to have some correlation with the gender of these animals. The blue one consists
mainly of females and the other two almost entirely of males.

Alike to the Zarchay’s karate network, the overlaps between communities cannot
be detected when the parameter k is not less than 4. When k = 3, overlaps between
the circle-denoted communities emerge while the green community keeps almost
intact. The Qc is 0.490 as to the resulting cover. The nodes occurring in overlapping
regions are Beak, Kringel, MN105, Oscar, PL, SN4, SN9 and TR99 among which
the nodes Beak and Kringel are shared by all the three circle-denoted communities.
Again these overlapping nodes are often misclassified by traditional partition-based
methods.
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Fig. 2.11 The community structure of dolphin network. The primary split of the network is rep-
resented by different shapes, square and circle. The different colors show the partition obtained by
our method with the parameter k = 4. Reprinted from Ref. [35], Copyright 2009, with permission
from IOP Publishing and SISSA

2.3.4.3 Application to the Word Association Network

Now we apply our method to a large real world complex network, namely the word
association network.

The data set for the word association network is from the demo of the software
CFinder [32]. This network consists of 7207 nodes and 31784 edges, and has been
shown to possess overlapping community structure [8]. It is constructed from the
South Florida Free Association norms list [40]. Initially, the network is a directed,
weighted network. The weight of a directed edge from one word to another indicates
the frequency that the people in the survey associated the end point of the edge with
its start point. These directed edges were replaced by undirected ones with a weight
equal to the sum of the weights of the corresponding two oppositely directed edges.
Furthermore, the edges with the weight less than 0.025 were deleted. In this way, an
un-weighted, undirected network is obtained, and it is the network we deal with.

Applying our method to the word association network, we obtain in total 20
communities which overlap with each other. The value of the corresponding Qc is
as high as 0.503, indicating a strong overlapping community structure. The size of
these found communities are very large that there is no specific semantic meaning
for each community. To investigate what is correlated to the overlapping community
structure, we apply our method to these communities iteratively and a hierarchy of
overlapping communities is obtained. We find that the sub-communities have cer-
tain correlation with semantic meaning of words. As an example, Table 2.1 shows us
the communities around the word play. The five overlapping communities represent
different meanings of the word play, respectively related to theater, musical instru-
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Table 2.1 The overlapping communities around the word play. Reprinted from Ref. [35], Copy-
right 2009, with permission from IOP Publishing and SISSA

No. Description Words in each community

1 theater act actor actress bow character cinema curtsey dance director do drama
entertain entertainment film guide involve juggler lead movie participate
perform performance play portray producer production program scene screen
show sing stage television theater

2 musical
instrument

alto band banjo bass beep blues brass bugle cello clarinet clef compose concert
conductor country drum faddle fiddle flute guitar harp honk horn instrument
jazz keyboard loud music oboe orchestra piano play rock saxophone
symphony tenor treble trombone trumpet tuba tune viola violin woodwind

3 children adults balls children family friends fun grown-ups guardians kids love mischief
nursery parents play playground play_dough prank putty toy toys tricycle

4 sports active arena athlete athletic baseball basketball black_and_white field football
fun game illustrated inactive jock pigskin play recreation referee soccer sports
stadium umpire

5 toys board boardwalk checkers chess fun game games monopoly nintendo play
plaything strategy toy toys vcr video winning yo-yo

Note: For each community, a short description is also given. The overlapped words are emphasized
in italic type

Fig. 2.12 Part of the
hierarchy of communities
extracted from the word
association network. The
dark-filled circles correspond
to the five communities
shown in Table 2.1. Reprinted
from Ref. [35], Copyright
2009, with permission from
IOP Publishing and SISSA

ments, children, sports and toys. Except the common-shared word play, four other
words are shared by some of these communities. They are fun, game, toy and toys.
The overlap between these communities characterizes the direct, local relationship
between them through sharing members. However, the extent of closeness between
communities is sometimes reflected by the indirect, global relationship between
them. One of this kind of relationship is the “genealogical” relationship between
communities, which can be illustrated by the hierarchy of overlapping communities.
Figure 2.12 is an example for hierarchy of communities. As shown in Fig. 2.12, the
communities 1 and 2 are in the same branch of the hierarchy, indicating that the
meanings represented by them are closer. This can be validated by examining the
words contained in these two communities. Similarly, the communities 4 and 5 are
also closely related. However, the distance between the communities 3 and 5 is
larger although they share as many as 4 words. The overlaps between communities
and the hierarchy of these communities provide us a more complete understanding
to the relationship between communities.
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2.4 Conclusions and Discussions

In this chapter, we have studied the problem of detecting both the overlapping and
hierarchical community structure in networks. The distinct contribution is that we
view a community as consisted of maximal cliques, instead of taking nodes as the
building blocks of communities. In this way, the overlapping community structure of
networks can be detected under the framework of traditional community detection
methods.

Furthermore, representing the overlapping community structure as a cover of net-
work, we propose two kinds of measurements to quantify the quality of a cover of
network. The first of is a simple extension of modularity with the consideration that
one node can simultaneously belong to more than one community with the same
belonging coefficients. For the second one, we proposed a more general extension
of modularity (namely Qc) by using a relaxed belonging coefficients. With the Qc

at hand, the overlapping community structure can be detected by optimizing the Qc

to find the optimal cover of network. Then, a maximal clique network is constructed
from the original network, and the overlapping community structure can be identi-
fied using any modularity optimization method on the maximal clique network.

In addition, Qc takes advantage of both the local topological structure (i.e., the
maximal clique) and the global statistical significance of link density compared with
a null-model reference network. In addition, Qc can be naturally used to simulta-
neously identify the overlapping and hierarchical community structure of networks.
Such a method is helpful to more completely understand the functional and struc-
tural properties of networks. The effectiveness of the proposed methods are demon-
strated by applications to several real world networks, including the word associa-
tion network and the scientific collaboration network.

As the further work, we will consider the generalization to the weighted and/or
directed networks. It is also an interesting problem about the selection of the param-
eter k in our method. We will further investigate how to determine an appropriate k

for a given network later.
Finally, we give a brief introduction of further readings about overlapping com-

munity structure, which has been studied widely in the recent years.
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Chapter 3
Multiscale Community Detection in Networks
with Heterogeneous Degree Distributions

3.1 Introduction

Graph clustering has been widely applied in exploring regularities emerging in re-
lational data. Recently, the rapid development of network theory correlates graph
clustering with the detection of community structure, a common and important topo-
logical characteristic of networks. Most existing methods investigate the commu-
nity structure at a single topological scale. Furthermore, the detection of multiscale
community structure is heavily affected by the heterogeneous distribution of node
degree. Thus, it is very challenging to detect multiscale community structure in net-
works with heterogeneous degree distribution.

In the past decade, many methods have been proposed to investigate the commu-
nity structure in networks [1–3]. These methods identify the community structure
through finding an optimal partition of network according to certain criterion or def-
inition of community. In general, the identified community structure corresponds to
only one topological scale of network. However, as shown by empirical studies, the
community structure of real world networks often exhibits multiple scales [4–7], i.e.,
more than one topological description is beneficial to characterize the community
structure of networks. Thus, it is desired to find methods that can detect multiscale
community structure.

Several studies have been conducted to investigate multiple topological scales of
networks. Arenas et al. [8] pointed out that synchronization process on networks
reveals topological scales of networks and that the spectrum of the Laplacian ma-
trix can be used to identify such topological scales. In Ref. [9], we have used the
network conductance to identify multiple topological scales through investigating
the diffusion process taking place on networks. Delvenne et al. considered multi-
scale community structure through investigating the stability of graph communities
across time scales [10]. A recent work gave a general optimization framework for
the detection of community structure in multiscale networks [11]. Another work
considered multiscale community structure through investigating the communities
of links instead of communities of nodes [12].

H.-W. Shen, Community Structure of Complex Networks, Springer Theses,
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However, there are still severe challenges that are not handled by previous work.
Existing work does not consider the heterogeneity of node degrees, which is very
common to real world complex networks in nature and society. Moreover, it is still
an open problem on how to characterize the significance of different relevant topo-
logical scales of a complex network.

To address these challenges, we consider the detection of multiscale commu-
nity structure by introducing a novel framework based on dimensionality reduc-
tion. Intuitively, we view the standard representation of network topology as a high-
dimensional but redundant description, where each node is taken as one dimension
of the network and the edges correspond to data points in the high-dimensional
space spanned by these node dimensions. The identification of community structure
can be viewed as finding the most significant reduced dimensions that capture the
main characteristics of the network topology [13]. Different significance levels for
such reduced dimensions correspond to the community structure at different topo-
logical scales with different importance at reflecting the characteristics of network
topology.

Under the proposed framework, we show that community detection can be
viewed as principal component analysis, a major dimensionality reduction method,
on the high-dimensional description of networks. Furthermore, we prove that the
well-known Laplacian matrix for network partition and the widely-used modular-
ity matrix for community detection are two kinds of covariance matrices used in
dimensionality reduction. We then propose a novel method to detect communities
at multiple topological scales within our framework. We further show that exist-
ing algorithms fail to deal with heterogeneous node degrees. We develop a novel
method to handle heterogeneity of networks by introducing a rescaling transforma-
tion into the covariance matrices in our framework. Extensive tests on real world and
artificial networks demonstrate that the proposed correlation matrices significantly
outperform Laplacian and modularity matrices in terms of their ability to identify
multiscale community structure in heterogeneous networks.

The remaining of this chapter is organized as follows. Section 3.2 discusses some
background. Section 3.3 gives a general framework for the detection of multiscale
community structure from the perspective of dimensionality reduction. Section 3.4
presents the rescaling transformation to address the heterogeneity problem. Sec-
tion 3.5 presents extensive experimental results on a number of artificial and real
word networks. Finally, Sect. 3.6 concludes this chapter by highlighting the main
contributions and findings.

3.2 Preliminaries

3.2.1 Principal Component Analysis

Principal component analysis (PCA) aims to find patterns in data of high dimen-
sions [14]. Here, we give a brief introduction to PCA for the convenience of under-
standing the remaining part of this chapter.
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In PCA, we suppose that we have m data points in an n-dimensional space. For
convenience, we can represent each data point as an n-dimensional column vector
and stack all the m column vectors into a data matrix X with the size n by m. The
empirical mean of these data points is denoted by a column vector x = 1

m

∑
j X∗j ,

where X∗j is the j th column of X. Furthermore, we make the data matrix X to have
zero empirical mean by subtracting the empirical mean x from each column of X

and the resulting data matrix is denoted by X̃. PCA works on the covariance matrix

C = X̃X̃T /(m − 1). (3.1)

Here, m − 1 is used instead of m to make the empirical covariance unbiased when
calculated from sample data points rather than a distribution.

PCA transforms high-dimensional data into a small number of principal compo-
nents, each corresponding to a direction in the space of data points. PCA is defined
in such a way that the first principal component accounts for as much of the variance
in the data as possible, and each succeeding component in turn has the highest vari-
ance under the constraint that it is orthogonal to the preceding components. Without
loss of generality, we use a normalized vector u to denote the first principal compo-
nent. We write u as a linear combination of the normalized eigenvectors ui of the
covariance matrix C, i.e., u = ∑n

i aiui , where the coefficients ai = uT
i u. Since u is

a normalized vector, we have uT u = 1 which implies that

n∑

i=1

a2
i = 1. (3.2)

The matrix X̃ can be projected onto the direction u as uT X̃. Taking into account
that X̃ has a zero mean, the variance along the direction u can be calculated by

V = 1

m − 1

(
uT X̃

)(
uT X̃

)T = 1

m − 1

(
uT X̃

)(
X̃T u

)

= uT Cu =
(

n∑

i

aiu
T
i

)
C

(
n∑

j

ajuj

)

=
∑

ij

aiajλj δij =
∑

i

a2
i λi, (3.3)

where λi is the eigenvalue of C corresponding to the eigenvector ui and we have
made use of Eq. 3.1 and uT

i uj = δij . The function δij is 1 if i = j and 0 otherwise.
Without loss of generality, we assume that the eigenvalues are labeled in decreasing
order λ1 ≥ λ2 ≥ · · · ≥ λn. The task of maximizing V can then be equated to the
task of choosing the nonnegative quantities a2

i so as to maximize Eq. 3.3 under the
constraint in Eq. 3.2.

Obviously, V reaches maximum when we set a2
1 = 1 and a2

i = 0 (i �= 1), i.e., the
first principal component u is parallel to the eigenvector u1. Then, we turn to the
second principal component along which the variance of data points is maximized
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with the constraint that it is orthogonal to the obtained principal component u1.
According to Eqs. 3.2 and 3.3, such a direction is parallel to the eigenvector u2. In a
similar way, it can be easily shown that all the eigenvectors of the covariance matrix
C are just all the principal components.

Note that X̃ corresponds to the standard bases ei , whose ith element is 1 and
other elements are 0. The eigenvectors ui of the covariance matrix C provide an-
other set of bases. We stack these eigenvectors into a matrix U with its ith column
being the ith eigenvector ui . The data matrix X̂ with respect to the new bases is
X̂ = UT X̃. Since X̂ is the results of rotating X̃ around the coordinate origin, X̂ also
has zero mean. Using Eq. 3.1, the covariance matrix Σ of X̂ can be calculated by

Σ = 1

m − 1
X̂X̂T = 1

m − 1
UT X̃X̃T U = UT CU. (3.4)

According to Eq. 3.4, Σ is a diagonal matrix with its diagonal elements being the
eigenvalues of the covariance matrix C in the order corresponding to the eigenvec-
tors stacked in U . All the non-diagonal elements of Σ are zeroes.

3.2.2 Graph Partitioning and the Laplacian Matrix

Graph partitioning problem has a long tradition of research in computer science.
This problem is to find a partition of graph with the minimum cut size, which is
the number of edges between different groups of nodes for unweighted graph. Gen-
erally, the desired number of node groups is known a priori. The classical graph
partitioning problem deals with two-way partitioning.

An unweighted, undirected graph or network is often described by its adjacency
matrix A defined as

Aij =
{

1 if there is an edge joining nodes i, j,

0 otherwise.
(3.5)

We assume that the network has no self-loop edges. For a two-way partitioning
problem, we can use an index vector s to denote the group membership of nodes,
i.e., si is 1 if node i belongs to the first group and −1 otherwise. Then the cut size
can be formulated by

S = 1

4

∑

ij

(1 − sisj )Aij = 1

4

∑

ij

sisj (kiδij − Aij ), (3.6)

where ki = ∑
j Aij is the degree of node i, and δij is 1 if i = j and 0 otherwise. In

a matrix form, we have

S = 1

4
sT Ls, (3.7)
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where L is the Laplacian matrix with its elements

Lij = kiδij − Aij =
{

ki if i = j,

−Aij otherwise.
(3.8)

The matrix L can also be defined in the matrix form L = D − A, where D is the
diagonal matrix with its ith diagonal element being the degree of node i.

For the convenience of understanding the matrix L and its later use, we list sev-
eral properties of L.

1. L is symmetric and positive semi-definite.
2. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant

one vector 1.
3. L has n non-negative, real-valued eigenvalues 0 = λL

1 ≤ λL
2 ≤ · · · ≤ λL

n .

For proof of these properties and more properties of the matrix L, the readers can
refer to [15].

According to Eq. 3.7, the cut size S obtains its minimum when the index vector
s is parallel to the eigenvector of L corresponding to the smallest eigenvalues. (For
details, the readers can refer to [16].) However, such an index vector divides all the
nodes into a sole group and this is a trivial solution to the problem of graph partition-
ing. Thus, of high interest is the eigenvector corresponding to the second smallest
eigenvalue, known as the Fiedler’s vector. As shown in [17], the Fiedler’s vector
has been well studied and widely used for two-way graph partitioning. Actually, the
Laplacian matrix and its variants play critical role in the spectral theory [18] and
have gains success in graph partitioning and image segmentation [19, 20]. More
importantly, the Laplacian matrix is often used to characterize the synchroniza-
tion dynamics on networks. A recent study [8] on the synchronization dynamics
on networks showed that the spectrum of the Laplacian matrix reveals the intrin-
sic topological scales, which are closely related to the community structure of net-
works.

3.2.3 Community Structure and the Modularity Matrix

As a common and important topological characteristic, the community structure
is proposed by Girvan and Newman [21]. Since then the community structure has
become the research topic of lots of scientific literature [2]. Different from graph
partitioning, the detection of community structure aims to find the natural partition
of networks. Generally, the number of communities and the sizes of communities
are not known a priori.

Earlier methods for community detection borrow ideas from traditional hierar-
chical clustering. They can be roughly classified into agglomerative methods and
divisive methods [22–24]. Each of these methods produces a dendrogram and the
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community structure can be obtained through cutting the dendrogram at an appro-
priate place according to certain criteria. Each cutting gives rise to a partition of
the network. Then, the critical problem becomes choosing the best place to cut the
dendrogram.

To address this problem, Newman proposed the modularity as a quality measure
for partitions of networks [22]. Given a partition P , the modularity is defined as

Q = 1

2m

∑

c∈P

∑

i,j∈c

(
Aij − kikj

2m

)
, (3.9)

where c is a community and 2m = ∑
i ki = ∑

ij Aij is the total strength of network
nodes.

With modularity, the detection of community structure becomes an optimization
problem of the modularity among all the possible partitions of a network. Unfor-
tunately, the optimization is proved to be NP-hard [25]. Many heuristic methods
are proposed to optimize the modularity, such as greedy algorithms [26, 27], simu-
lated annealing [28], extremal optimization [29], Tabu search [6], and mathematical
programming [30].

Recently, in [31], Newman pointed out that the modularity can be expressed in
terms of the eigenvectors of a characteristic matrix of the network, which is called
the modularity matrix. The elements of the modularity matrix B are written as

Bij = Aij − kikj

2m
. (3.10)

This matrix gives a spectral explanation of the modularity and provides an effective
way to optimize it.

Although the modularity gains great success, it suffers several serious problems
which limit its capability and applicability. As pointed out by Fortunato et al. [5],
the optimization of modularity faces the resolution limit problem, i.e., the existence
of an intrinsic scale beyond which the communities cannot be detected even though
these communities are very distinct. Another problem is that only one topological
scale is obtained by the optimization of modularity while multiple topological scales
exist in real world networks [6]. Finally, as pointed out by us [32], the modularity
fails to handle networks with heterogeneous node degrees.

3.3 Framework for Detecting Multiscale Community Structure

In this section, we first give a general framework for the detection of multiscale
community structure from the perspective of dimensionality reduction. Then, under
this framework, we give a unified explanation for the Laplacian matrix for two-way
network partition and the modularity matrix for community detection. Finally, using
these two matrices as the covariance matrices under our framework, we propose new
methods to uncover multiscale community structure of networks.



3.3 Framework for Detecting Multiscale Community Structure 51

Table 3.1 A dimensionality reduction framework for community structure detection. Reprinted
from Ref. [33], with kind permission from Springer Science+Business Media

Steps Descriptions

1 Give a matrix representation for the topology of network. With this representation, each
node corresponds to a vector.

2 Define the covariance matrix according to the original matrix representation.

3 Obtain the top p eigenvectors in the descending (ascending) order of eigenvalues if the
original matrix representation is positively (negatively) correlated with the intuitive
definition of community structure. The value of p is determined according the spectrum
of eigenvalues.

4 Project the original node vectors onto the top eigenvectors and obtain the projected
node vectors.

5 Find the community structure through clustering the projected node vectors. Note that
different values of p correspond to community structure at different topological scales.

3.3.1 Our Framework

As described in the previous section, the covariance matrix plays a central role in
PCA. Specifically, the eigenvectors of the covariance matrix provide a set of new
orthogonal bases to represent the data points. The corresponding eigenvalues char-
acterize the significance of each eigenvector, i.e., principal components in PCA.
From the perspective of dimensionality reduction and considering the role of the
covariance matrices, we give a general framework for the detection of community
structure in networks as shown in Table 3.1.

In our framework, there are two key ingredients. The first one is finding an appro-
priate covariance matrix of a network for which the PCA analysis on it corresponds
to finding community structure. The second one is determining the different topo-
logical scales of community structure, i.e., determining the different values of p.
In the remaining part of this section, we will first show that Laplacian matrix and
modularity matrix can be formulated as two kinds of covariance matrices of a net-
work and perform PCA on these covariance matrices to detect community structure.
Then, we give the methods to identify multiscale structure using PCA.

3.3.2 Covariance Matrices of Networks

We now show that common matrices for community detection, including Laplacian
matrix and modularity matrix, can be viewed as covariance matrices in PCA analysis
for certain representation of networks.

3.3.2.1 Laplacian Matrix

Given a network, we can represent it with a node-edge incidence matrix instead
of the adjacency matrix. Specifically, for a directed edge pointing to node j from
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node i, i is called the tail and j is called the head of the edge. The node-edge
incidence matrix is defined as

Zil =

⎧
⎪⎨

⎪⎩

1 if the node i is the tail of the edge l,

−1 if the node i is the head of the edge l,

0 otherwise.

(3.11)

For an undirected edge, it can be replaced by two oppositely directed edges. For
clarity, we restrict our attention to undirected networks without self-loop edges al-
though the findings are also applicable to directed networks. We assume that the
incidence matrix has the size n by 2m, where n nodes correspond to n rows and m

edges produce the 2m columns.
For the incidence matrix Z, n nodes correspond to n dimensions. The columns

of Z can be taken as n-dimensional data points distributed in the space spanned by
the n dimensions. Note that the empirical mean of these data points is 0. Thus, the
empirical covariance matrix for the n node dimensions can be formulated as

C′ = 1

2m − 1
ZZT , (3.12)

with the elements being

C′
ij =

{
2ki/(2m − 1) if i = j ,

−2Aij /(2m − 1) otherwise.
(3.13)

Our key observation is that, ignoring the constant 2/(2m − 1), this covariance ma-
trix C′ is identical to the Laplacian matrix L defined in Eq. 3.8. The constant term
does not affect the PCA method and it is a common practice to ignore it. In sum-
mary, we conclude that the Laplacian matrix is the covariance matrix of network
when represented by the node-incidence matrix Z.

3.3.2.2 Modularity Matrix

Now we investigate another representation for network, which is given by two node-
edge incidence matrices, defined as

Xil =
{

1 if the node i is the tail of the edge l,

0 otherwise,
(3.14)

and

Yil =
{

1 if the node i is the head of the edge l,

0 otherwise.
(3.15)

Note that the rows of X (or Y ) are mutually orthogonal and that each column sums
to unity.
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Unlike the matrix Z which represents the direction of edges by the signs of ele-
ments, the new representation has two node-edge incidence matrices and the direc-
tions of edges are distinguished directly by the different matrices, i.e., the tails of
nodes are in the matrix X and the heads of nodes in the matrix Y .

For this new representation, the empirical mean of these data points in X is de-
noted by x = 1

2m

∑
j X∗j , where X∗j is the j th column of X. Similarly, we give the

empirical mean of the data points in Y as y = 1
2m

∑
j Y∗j . According to Eqs. 3.14

and 3.15, we have x = y = (k1, k2, . . . , kn)
T /2m. Now we subtract the mean x from

each column of X and the mean y from each column of Y . Such an operation is
known as the translation transformation and makes the data points to have a zero
mean. The resulting matrices can be denoted by X̃ = X − x1T and Ỹ = Y − y1T ,
where 1 is a constant vector with appropriate dimensions. With X̃ and Ỹ , the em-
pirical covariance between the ith row of X and the j th row of Y can be calculated
by X̃i∗ · (Ỹj∗)T /(2m − 1). As a result, the covariance matrix between all the rows
of X and the rows of Y is

C′′ = 1

2m − 1
X̃Ỹ T , (3.16)

with its elements being

C′′
ij = 1

2m − 1

(
Aij − kikj

2m

)
. (3.17)

We can see that, ignoring the constant term 1/(2m−1), the covariance matrix C′′
is identical to the modularity matrix defined in Eq. 3.10. Thus, similar to the Lapla-
cian matrix, the modularity matrix can also be viewed as a kind of covariance ma-
trix of a network. Different from the elements of the Laplacian matrix which are
the covariance of the same matrix Z, the elements of the modularity matrix is the
cross-covariance between the different matrices X and Y . This difference will be
discussed in the subsequent section when we use these two matrices to study the
community structure of networks.

In addition, the derivation of the two covariance matrices can be easily extended
to weighted networks if we consider each weighted edge between two nodes as
multiple unweighted edges connecting them.

3.3.3 Detection of Community Structure as PCA

We have shown that the Laplacian and modularity matrices are two kinds of covari-
ance matrices of networks. Now we give algorithms for community detection from
the perspective of dimensionality reduction. In particular, we show that PCA analy-
sis on these covariance matrices can not only detect community structure, but also
identify communities on multiple topological scales.
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3.3.3.1 Laplacian Matrix

For a Laplacian matrix, based on our analysis, the off-diagonal elements character-
ize the covariance between different dimensions corresponding to nodes of a net-
work. If two nodes are connected, the covariance is negative. For networks with
community structure, the tail nodes of edges are expected to be positively correlated
with the head nodes of edges [34]. Thus, to uncover the community structure of
networks, the eigenvectors of a Laplacian matrix should be ranked in an ascending
order of the corresponding eigenvalues.

However, the eigenvector corresponding to the smallest eigenvalue of the Lapla-
cian matrix results in a trivial partition of the network, in which all the nodes belong
to the same community. According to the properties of the Laplacian matrix, all
its eigenvalues are non-negative and only the smallest eigenvalue is 0 for connected
networks. Thus we only take into account the eigenvectors corresponding to positive
eigenvalues for the purpose of community detection. Note that the Fiedler’s vector
for network partitioning is the eigenvector corresponding to the smallest positive
eigenvalue. As an example, Table 3.2 gives the Fiedler’s vector for Zachary’s karate
club network, which is widely used as a benchmark for community detection. The
network and its community structure are depicted in Fig. 3.1. We can see that the
real fission of the club network is revealed by the signs of the components in the
Fiedler’s vector. Only node 3 is misclassified.

Table 3.2 Eigenvectors corresponding to the least/most positive eigenvalue of the Laplacian/mod-
ularity matrix associated with the Zachary’s club network. Reprinted from Ref. [33], with kind
permission from Springer Science+Business Media

Node Id Laplacian
matrix

Modularity
matrix

Node Id Laplacian
matrix

Modularity
matrix

1 −0.1121 −0.3875 18 −0.1002 −0.1320

2 −0.0413 −0.2696 19 0.1628 0.1394

3 0.0232 −0.1319 20 −0.0136 −0.0576

4 −0.0555 −0.2535 21 0.1628 0.1394

5 −0.2846 −0.1340 22 −0.1002 −0.1320

6 −0.3237 −0.1457 23 0.1628 0.1394

7 −0.3237 −0.1457 24 0.1557 0.2167

8 −0.0526 −0.2094 25 0.1530 0.0563

9 0.0516 0.0545 26 0.1610 0.0754

10 0.0928 0.0479 27 0.1871 0.1158

11 −0.2846 −0.1340 28 0.1277 0.1028

12 −0.2110 −0.0778 29 0.0952 0.0683

13 −0.1095 −0.1287 30 0.1677 0.2063

14 −0.0147 −0.1350 31 0.0735 0.0963

15 0.1628 0.1394 32 0.0988 0.1019

16 0.1628 0.1394 33 0.1303 0.3239

17 −0.4228 −0.0585 34 0.1189 0.3698
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Fig. 3.1 The network of the karate club network. This network was firstly studied by Zachary [35].
The real social fission of this network is represented by two different shapes, circle and square. This
network also exhibits community structure at the other two scales. Specifically, different colors
depict the communities at the other scale. The dashed-curve gives another alternative partition of
network. Reprinted from Ref. [33], with kind permission from Springer Science+Business Media

3.3.3.2 Modularity Matrix

For a modularity matrix, the covariance between two node dimensions is positive
if the two nodes are connected and negative otherwise. This is consistent with the
intuition on community structure, i.e., for networks with community structure, the
tail nodes of edges are expected to be positively correlated with the head nodes
of edges [34]. Thus, under our framework for community detection, the eigenvec-
tors of the modularity matrix are ranked in descending order of the corresponding
eigenvalues and the top eigenvectors provide meaningful information for commu-
nity structure. As an example, Table 3.2 gives the eigenvector corresponding to the
largest eigenvalue of the modularity matrix associated with the Zachary’s karate
club network. The signs of the components in the eigenvector exactly uncover the
real split of the network.

However, different from the Laplacian matrix which is calculated according to
the same data matrix Z, the modularity matrix is the cross-covariance according to
two different data matrices X and Y . Thus, the eigenvalues of the modularity matrix
can be positive or negative rather than all being non-negative. Generally speaking,
the positive eigenvalues indicate that the corresponding eigenvectors make positive
contribution to reflect the community structure. As to the negative eigenvalues, the
corresponding eigenvectors reflect the so-called anti-community structure where the
edges lying among different communities are denser than the edges within commu-
nities. When all the eigenvalues are negative, no community structure exists in the
network [31]. Thus, for the purpose of community detection, we only consider the
eigenvectors corresponding to positive eigenvalues.

In addition, the eigenvectors of the Laplacian and modularity matrices behave
very differently. Intuitively, the eigenvectors of the Laplacian matrix characterize
the deviation of nodes relative to the center of the networks. As shown in Table 3.2,
the Fiedler’s vector partitions the network nodes into two groups, denoted by squares
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and circles in Fig. 3.1. Among the square nodes, node 17 achieves the most negative
components in the Fiedler’s vector. This indicates that the node 17 is far away from
the center of network. Other larger negative components in Fiedler’s vector corre-
spond to nodes 6, 7, 5, 11 and 12, which are also very far away from the center of
network. Similarly, among the circle nodes, nodes corresponding to larger positive
components are also far away from the center of network, such as nodes 27, 30, 15,
16, 19, 21, 23, and 26. For the eigenvectors of the modularity matrix, the magnitude
of its components reflects the connectivity of nodes in their respective communities.
As shown in Table 3.2, the larger components in the eigenvector of modularity ma-
trix correspond to nodes 1, 2, 4, 33 and 34, which are nodes with high connectivity
and central in their communities.

3.3.4 Detection of Multiscale Community Structure

An important strength of our framework is that, it provides a natural and effective
way to identify communities at multiple scales. As we show before, existing ap-
proaches correspond to PCA analysis that only considers the largest positive eigen-
value. Our key observation is that it is by extending the consideration from the
largest to the top few eigenvalues, we can detect multiscale community structure.
This is a unique advantage of our new framework.

To utilize such information provided by all these eigenvectors, we propose a new
algorithm that employs the k-means clustering method to cluster the node vectors
which are obtained through projecting the original coordinate vector of nodes onto
the new set of bases U , composed of the top eigenvectors. Specifically, with respect
to the standard bases, the coordinate vector of the ith node is ei . With respect to the
new orthogonal bases U , the projected node vector becomes UT ei . Mathematically,
the ith projected node vector vi can be denoted by

[vi]j = Uij . (3.18)

We know that direction and magnitude are two critical factors of a vector. As to
a node vector, the direction determines the membership of nodes and the magni-
tude characterizes the degree to which a node belongs to a community. As shown
in Table 3.2, the membership of nodes can be determined according to the signs of
the components in the eigenvectors, i.e., the direction of the one-dimensional node
vectors due to that only one eigenvector is considered. Considering more than one
eigenvector can provide more information. Taking the modularity matrix as exam-
ple, Fig. 3.2 illustrates the role of the direction of two-dimensional node vectors at
determining the membership of nodes through considering the eigenvectors corre-
sponding to the two largest eigenvalues. In summary, when we only focus on the
assignment of nodes to communities, we can use the normalized node vectors vi

and ignore the magnitude of node vectors.
As a kind of mesoscopic structure of network, the community structure provides

a coarse-grained description of the network topology. Hence, only the most signif-
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Fig. 3.2 A plot of the node
vectors of the karate club
network. Here, the top p = 2
eigenvectors of the
modularity matrix are
utilized. Each node vector is
marked by the node index.
Several node vectors are
identical and thus marked
with more than one node
indices. Reprinted from
Ref. [33], with kind
permission from Springer
Science+Business Media

icant structural features are maintained and the less ones are neglected. Now the
tricky problem is how to determine the significant ones. Under our dimensionality
reduction framework, this problem is equivalent to choosing the top p significant
eigenvectors. We know that the eigenvalues of the covariance matrices characterize
the significance of each eigenvector. Hence, we can decide the number of significant
eigenvectors based on the corresponding eigenvalues. Intuitively, it is appropriate to
choose eigenvectors corresponding to smaller positive eigenvalues of the Laplacian
matrix or larger positive eigenvalues of the modularity matrix. Furthermore, a large
eigengap, i.e., interval between two successive eigenvalues, provides an effective
indicator to determine the appropriate number of significant eigenvectors. For the
Laplacian matrix, the length of the ith eigengap is defined as logλL

i+1 − logλL
i

(2 ≤ i ≤ n − 1) [8]. As to the modularity matrix, the length of the ith eigengap
is defined as λB

i−1 − λB
i (2 ≤ i ≤ n) [32]. Similar methods have been adopted in

other contexts to take the advantage of the eigengap of many other types of matri-
ces [8, 9, 16, 36, 37]. The choice of eigenvectors with different significance levels
corresponds to the community structure at different topological scales. Our key ob-
servation is that the existence of a significant scale is indicated by the occurrence of
a large eigengap.

Another important problem is the determination of the number of communities.
After choosing the p significant eigenvectors, according to Eq. 3.18, each node in
the network is represented by a p-dimensional node vector through projecting its
standard coordinate vector onto the p significant eigenvectors. Then, the identifica-
tion of community structure amounts to partitioning the node vectors into groups.
According to [16], p +1 is the number of communities when the top p eigenvectors
are employed to obtain the projected node vectors.

3.3.4.1 Two Examples

Taking the Zachary’s karate club network as example again, we illustrate the effec-
tiveness of the eigengap at determining the number of communities. As shown in
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Fig. 3.3 The spectrum of the covariance matrices associated with the karate club network. Left
panel: the Laplacian matrix. Right panel: the modularity matrix. For the Laplacian matrix, the
trivial eigenvalue 0 is ignored and the x-axis is in logarithmic scale. Reprinted from Ref. [33], with
kind permission from Springer Science+Business Media

Fig. 3.3 (left panel), the largest eigengap of the Laplacian matrix occurs between the
first and second smallest positive eigenvalues. This indicates that only the Fiedler’s
vector is the significant eigenvector and it partitions the network into two commu-
nities. The right panel of Fig. 3.3 shows that the largest eigengap of the modularity
matrix resides between the largest and the second largest eigenvalues (only the ones
between positive eigenvalues are considered for the community detection). It indi-
cates that it is appropriate to utilize only the first eigenvector and the number of
communities is 2. The resulting two communities exactly reflect the real split of
the network in Fig. 3.1. In addition, for the modularity matrix, besides the largest
eigengap, two other relatively larger eigengaps can be observed, one between the
second and third largest eigenvalues, and the other between the third and forth. The
resulting partition according to these two eigengaps are also depicted in Fig. 3.1,
one dividing the network into three communities separated using dashed curves,
and the other dividing the network into four communities differentiated by colors.
These two partitions are often the results of many traditional community detection
methods for a single topological scale [2]. Although they are not identical to the real
split of the network, they reveal certain relevant topological feature of the network
at alternative scales.

Actually, for a network with multiscale community structure, each scale corre-
sponds to a large eigengap in the spectrum of the covariance matrices. Thus, we can
identify the multiscale community structure using the top eigenvectors indicated by
these different eigengaps.

As another example, we illustrate the identification of multiscale community
structure of the H13-4 network (shown in Fig. 3.5a), which is constructed accord-
ing to [8]. The network has two predefined hierarchical levels. The first hierarchical
level consists of 4 groups of 64 nodes and the second level consists of 16 groups of
16 nodes. On average, each node has 13 edges connecting to the nodes in the same
group at the second level and has 4 edges connecting to the nodes in the same group
at the first level. This explains the name of such kind of networks. In addition, the
average degree of each node is 18. According to the construction rules of the H13-4
network, the two hierarchical levels constitute the different topological description
of the community structure of the H13-4 network at different scales.



3.3 Framework for Detecting Multiscale Community Structure 59

Fig. 3.4 The spectrum of the covariance matrices associated with the H13-4 network. Left panel:
the Laplacian matrix. Right panel: the modularity matrix. For the Laplacian matrix, the trivial
eigenvalue 0 is ignored and the x-axis is in logarithmic scale. The H13-4 network is shown in
Fig. 3.5a. Reprinted from Ref. [33], with kind permission from Springer Science+Business Media

Fig. 3.5 Two schematic networks. (a) The H13-4 network. (b) The clique circle network. Each
circle corresponds to a clique, whose size is marked by its label. The cliques labeled with ks

are smaller cliques with the size s, while the cliques labeled with kb are bigger cliques with the
size b. Here, s = 10 and b = 20. Reprinted from Ref. [33], with kind permission from Springer
Science+Business Media

As shown in Fig. 3.4, two significant eigengaps can be observed in the spectrum
of either the Laplacian matrix or the modularity matrix.

• One eigengap occurs between the 3rd and 4th smallest positive eigenvalues for
the Laplacian matrix or between the 3rd and 4th largest eigenvalues for the mod-
ularity matrix. The topological scale indicated by such eigengaps corresponds to
the partition dividing the nodes into 4 groups. Actually, the resulting communities
are exactly the predefined 4 groups of 64 nodes in the first hierarchical level.

• The other eigengap occurs between the 15th and the 16th smallest positive eigen-
values for the Laplacian matrix or between the 15th and 16th largest eigenvalues
for the modularity matrix. This eigengap indicates the other significant topologi-
cal scale corresponds to the partition dividing the network nodes into 16 groups.
Again, the resulting communities are exactly the predefined 16 groups in the sec-
ond hierarchical level.



60 3 Multiscale Community Detection in Heterogeneous Networks

• Although the two intrinsic scales can be identified by either the Laplacian matrix
or the modularity matrix, according to the lengths of eigengaps, the Laplacian
matrix prefers the partition dividing the network into 4 groups of nodes while the
modularity matrix tends to give the partition dividing the network into 16 groups
of nodes.

3.4 Heterogeneity Problem and the Rescaling Transformation

In the previous section, we have introduced the method to identify the multiscale
community structure using a dimensionality reduction framework with the Lapla-
cian and modularity matrices as covariance matrices. In addition, we proposed to
use different eigengaps in the spectrum of the covariance matrices to identify com-
munity structure at different topological scales. However, this method works well
only for homogeneous networks, where the nodes have approximately the same de-
gree and the communities at a specific scale are of the same size. However, real
world networks usually have heterogeneous node degrees and community sizes.

We first illustrate the ineffectiveness of the covariance matrices to deal with the
heterogeneous node degrees and community sizes using a schematic network, which
is often called the clique circle network as depicted in Fig. 3.5b. Generally speaking,
the intrinsic community structure corresponds to the partition where each clique is
taken as a community, that is, only one intrinsic scale exists in this network. How-
ever, as shown in Fig. 3.6 (left panel), two scales are observed when we investi-
gate the community structure of this network using the spectrum of the Laplacian
matrix. One scale corresponds to the intrinsic scale of the network, and the other
corresponds to dividing the network nodes into 3 groups, which is not desired. Sim-
ilarly, as shown in Fig. 3.7 (left panel), besides the intrinsic scale of the clique circle
network, another undesired scale is observed in the spectrum of the modularity ma-
trix which corresponds to dividing the network nodes into 5 groups. These results
demonstrate that the covariance matrices have difficulty in handling heterogeneity
of networks.

Fig. 3.6 The spectrum of the Laplacian matrices corresponding to the clique circle network. Left
panel: the Laplacian matrix. Right panel: the normalized Laplacian matrix. The clique circle net-
work is depicted in Fig. 3.5b. The horizontal axis shows the eigenvalues of matrix and the vertical
axis represents the rank index of eigenvalues. Reprinted from Ref. [33], with kind permission from
Springer Science+Business Media
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Fig. 3.7 The spectrum of the modularity matrices corresponding to the clique circle network. Left
panel: the modularity matrix. Right panel: the normalized modularity matrix. The clique circle net-
work is depicted in Fig. 3.5b. The horizontal axis shows the eigenvalues of matrix and the vertical
axis represents the rank index of eigenvalues. Reprinted from Ref. [33], with kind permission from
Springer Science+Business Media

To address this problem, we reconsider the formulation of these two covariance
matrices. When formulating the covariance matrices from the data matrices, defined
in Eqs. 3.11, 3.14 and 3.15, the covariance matrices are both zero-centering through
subtracting off the mean of data points. This is called the translation transformation.
When using the eigenvectors of the Laplacian or modularity matrix as the new or-
thogonal bases instead of the standard bases, the rotation transformation is utilized.
These two transformations, however, do not take into account the difference among
the variances of the original dimensions, each corresponding to one node. Thus, the
spectrum of the Laplacian and modularity matrices fails to deal with the heterogene-
ity of node degrees. We propose a remedy called rescaling transformation. Through
introducing the rescaling transformation into the Laplacian matrix, we obtain the
normalized Laplacian matrix, which can be formulated as

Lnorm = (ΣZ)−1/2C′(ΣZ)−1/2, (3.19)

where the element (ΣZ)ii = 2ki/(2m − 1) of the diagonal matrix ΣZ denotes the
empirical variance of the original data matrix Z defined in Eq. 3.11 along the ith
axis direction. Specifically, the elements of Lnorm can be written as

Lnorm
ij = Lij√

kikj

. (3.20)

Similarly, using the rescaling transformation, we obtain the normalized modularity
matrix

R = (ΣX)−1/2C(ΣY )−1/2, (3.21)

where ΣX is a diagonal matrix with its diagonal elements (ΣX)ii = ki(1 −
ki/2m)/(2m− 1) being the empirical variance of X along the ith standard axis, and
ΣY is a diagonal matrix with its diagonal elements (ΣY )jj = kj (1−kj /2m)/(2m−
1) being the empirical variance of Y along the j th standard axis. Specifically, the
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elements of R are defined as

Rij = Aij − kikj

2m√
ki(1 − ki/2m)

√
kj (1 − kj /2m)

. (3.22)

In statistics, these normalized matrices are called correlation matrices.
Compared with the covariance matrices, the correlation matrices have two ad-

vantages. Firstly, the correlation matrices can well deal with the heterogeneity of
node degrees. As shown in Fig. 3.6 (right panel) and Fig. 3.7 (right panel), the in-
trinsic scale of the clique circle network is correctly revealed by the spectrum of
both correlation matrices. Furthermore, different from the covariance matrices, no
undesired topological scales are observed. Secondly, for the correlation matrices, the
magnitude of their eigenvalues themselves can provide vital information for the co-
hesiveness within each community and the looseness of connections between differ-
ent communities. As shown in Fig. 3.6 (right panel), the eigenvalues on the smaller
side of the largest eigengap all approach 0. Similarly, as shown in Fig. 3.7 (right
panel), the eigenvalues on the greater side of the largest eigengap all approach 1.
Both indicate that the intrinsic communities are very cohesive. Meanwhile, other
eigenvalues are very small, indicating connections between different communities
are loose.

The second advantage of the correlation matrices is especially important for com-
munity detection on networks without a significant topological scale. For these net-
works, the eigengaps of the covariance matrices or the correlation matrices both
fail to provide obvious evidence for the number of intrinsic communities. In these
cases, the eigenvalues themselves can provide critical information of the community
structure.

In addition, for the original covariance matrices, the magnitude of their eigenval-
ues is influenced by the network size and the heterogeneity of node degrees. Hence,
the eigenvalues cannot provide useful information to determine the cohesiveness
of the communities and the number of intrinsic communities. For the correlation
matrices with rescaling transformation, however, the magnitude of the eigenvalues
has been rescaled and thus can provide information about the cohesiveness of com-
munities and help us choose the desired scale with respect to specific application
demands. Moreover, the eigenvalues of the correlation matrices can be compared
across different networks since they are rescaled and not influenced by the network
size.

3.5 Experimental Results

In this section, we empirically demonstrate the effectiveness of the multiscale com-
munity detection methods based on our dimensionality reduction framework. In ad-
dition, we apply our approach to a variety of real world networks.
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3.5.1 Tests on Synthetic Benchmark Networks

We utilize the benchmark proposed by Lancichinetti et al. in [38]. This bench-
mark provides networks with heterogeneous node degrees and community sizes,
which are common characteristics in real world networks. Many parameters are
used to control the generated networks: the number of nodes N , the average node
degree 〈k〉, the maximum node degree max_k, the mixing ratio μ, the exponent γ of
the power law distribution of node degree, the exponent β of the power law distri-
bution of community size, the minimum community size min_c, and the maximum
community size max_c. In our tests, we use the default parameter configuration
where N = 1000, 〈k〉 = 15, max_k = 50, min_c = 20, and max_c = 50. To test the
influence of the distribution of node degree and community size, we adopt four pa-
rameter configurations for γ and β , (γ,β) = (2,1), (γ,β) = (2,2), (γ,β) = (3,1)

and (γ,β) = (3,2). By tuning μ, we test the effectiveness of our method on net-
works with different fuzziness of communities. A larger μ gives a fuzzier commu-
nity structure. In addition, we adopt the normalized mutual information (NMI) [1]
to compare the partition found by community detection methods against the true
partition. A larger NMI indicates a better method.

Note that each benchmark network has only one intrinsic topological scale ac-
cording to the construction rules. Therefore, we only consider the largest eigengap
in the spectrum of the covariance and correlation matrices. The communities are
identified using the top p significant eigenvectors indicated by the largest eigengap.
The p eigenvectors are projected into the node vectors according to Eq. 3.18, and
the communities are identified by clustering these node vectors using the k-means
clustering method. Note that this results in p + 1 communities.

The first test focuses on whether the intrinsic scale can be correctly uncovered.
Figure 3.8 shows the comparison between the Laplacian matrix and the normalized
Laplacian matrix. Figure 3.9 compares the modularity matrix and the normalized
modularity matrix. When the community structure is evident, i.e., the mixing ra-
tio μ is smaller, both the two covariance matrices and the two correlation matrices
are effective at identifying the correct number of communities and thus the intrin-
sic scale of the network. However, when the community structure becomes fuzzier
with an increased μ, the performance of the original covariance matrices deterio-
rates while the correlation matrices with the rescaling transformation still achieve
good results. Even when the mixing ratio μ is larger than 0.5, the border beyond
which communities are no longer defined in the strong sense [23], the number of
communities can still be accurately identified by investigating the spectrum of the
correlation matrices.

The second test turns to whether the intrinsic community structure can be iden-
tified. As demonstrated by the first test, the correlation matrices outperform the co-
variance matrices at finding the correct number of communities. In the second test,
we assume that the community number has been given a priori and then we com-
pare the effectiveness of the eigenvectors of these two kinds of matrices in terms of
the NMI. As shown in Figs. 3.10 and 3.11, all the four matrices exhibit very good
performance at identifying the intrinsic community structure when the community
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Fig. 3.8 Comparison between Laplacian matrices at identifying community number. The standard
Laplacian matrix is depicted by � and the normalized Laplacian matrix is depicted by ©. The
comparison is conducted on benchmark networks with different parameter configurations. For each
parameter configuration, 100 generated networks are used. Reprinted from Ref. [33], with kind
permission from Springer Science+Business Media

Fig. 3.9 Comparison between modularity matrices at identifying community number. The modu-
larity matrix is depicted by � and the normalized modularity matrix is depicted by ©. The com-
parison is conducted on benchmark networks with different parameter configurations. For each
parameter configuration, 100 generated networks are used. Reprinted from Ref. [33], with kind
permission from Springer Science+Business Media

structure is evident. When the structure is less evident (μ is larger), however, the
correlation matrices outperform the covariance matrices for all parameter configu-
rations. This indicates that the eigenvectors of the correlation matrices characterize
the spread characteristics of network nodes better than covariance matrices, espe-
cially when the community structure is fuzzier.
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Fig. 3.10 Comparison between Laplacian matrices at identifying community structure. The stan-
dard Laplacian matrix is depicted by � and the normalized Laplacian matrix is depicted by ©.
The comparison is conducted on benchmark networks with different parameter configurations.
Each point corresponds to an average over 100 network realizations. Reprinted from Ref. [33],
with kind permission from Springer Science+Business Media

Fig. 3.11 Comparison between Laplacian matrices at identifying community structure. The mod-
ularity matrix is depicted by � and the normalized modularity matrix is depicted by ©. The com-
parison is conducted on benchmark networks with different parameter configurations. Each point
corresponds to an average over 100 network realizations. Reprinted from Ref. [33], with kind per-
mission from Springer Science+Business Media

In addition, the test results indicate that the two correlation matrices behave al-
most identically although their corresponding two covariance matrices have rather
different performance. This phenomenon further indicates that the rescaling trans-
formation is critical for handling heterogeneity in networks.
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3.5.2 Tests on Real World Networks

3.5.2.1 Co-author Network: A Case Study

Many real world networks can be used to test the effectiveness of our approach.
Here, taking a co-author network as an example, we illustrate the superiority of the
correlation matrices to the covariance matrices and later we will only focus on the
applications of the correlation matrices on more real world networks.

The nodes of the co-author network represent all individuals who are authors
of papers cited in the bibliographies of either of two recent reviews on network
research [39, 40] and edges join every pair of individuals whose names appear to-
gether as authors of a paper in those bibliographies. The network is constructed
as described in [16]. In total, 1589 authors contributed to the papers in the bib-
liographies and thus the obtained network contains 1589 nodes. We only focus
on the giant component of this network, containing 379 nodes and 914 weighted
edges.

Investigating the community structure of the network from the perspective of di-
mensionality reduction, Fig. 3.12 illustrates the spectrum of the Laplacian matrix,
the normalized Laplacian matrix, the modularity matrix and the normalized mod-
ularity matrix. As to the Laplacian matrix and the modularity matrix, the largest
eigengap indicates that the significant topological scale corresponds to the partition
dividing the network into 2 groups. As to the two correlation matrices, as shown
in the insets in Fig. 3.12(b) and (d), the most significant topological scale corre-
sponds to the partition dividing the nodes into 46 groups. To facilitate the compar-
ison between these two partitions, we gives the topology of the co-author network
in Fig. 3.13. Meanwhile, the partition with 46 groups is also depicted with different
colors. Intuitively, we can see that such a partition captures the main topological
characteristics of the co-author network and provides a much better representation
of the community structure than the coarse-grained two-way partition detected by
the covariance matrices. This can be further verified through checking the name of
each author and his/her research interest.

Fig. 3.12 The spectrum of four matrices associated with the co-author network. The four matrices
are respectively (a) the Laplacian matrix, (b) the normalized Laplacian matrix, (c) the modularity
matrix, and (d) the normalized modularity matrix. The horizontal axis shows the eigenvalues of
matrices and the vertical axis represents the rank index of eigenvalues. For the normalized Lapla-
cian matrix and normalized modularity matrix, an inset is used to illustrate the largest eigengap.
Reprinted from Ref. [33], with kind permission from Springer Science+Business Media
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Fig. 3.13 The topology of the co-author network. The width of each edge represents its weight.
Different colors characterize the partition dividing the network nodes into 46 groups, which is
obtained through using either of the two correlation matrices. Reprinted from Ref. [33], with kind
permission from Springer Science+Business Media

3.5.2.2 Applications to More Real World Networks

Many tests on synthetic networks have demonstrated that the correlation matrices
are superior to the covariance matrices at uncovering the intrinsic topological scale
of networks. Now we apply the correlation matrices to more real world networks,
which are widely used to evaluate community detection methods. These networks
include the match network of the National Basketball Association teams in the
2009–2010 season, the journal index network constructed in [41], the social net-
work of dolphins [22], the college football network of the United States [21], the
metabolic network of E. Coli [42], the network of political books [31], the net-
work of jazz musicians [43], the coauthor network of network scientists presented
in [16], and the email network of University Rovira i Virgili [44]. For convenience,
these networks are respectively abbreviated to nba, journal, dolphin, football, ecoli,
polbook, jazz, netsci and email. The test results on these networks are shown in
Fig. 3.14. Due to that the two correlation matrices achieve identical results, we only
give the results of the normalized modularity matrix.
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Fig. 3.14 Applications to real world networks. The vertical axis represents the length of the eigen-
gap and the horizontal axis represents the corresponding community number indicated by the
eigengap. The shaded-circles mark the largest eigengap. Note that, for community detection, only
the eigengaps between positive eigenvalues are taken into account. The vertical dashed lines are
the place where the zero-valued eigenvalues occur. Reprinted from Ref. [33], with kind permission
from Springer Science+Business Media

Figure 3.14 shows the occurrence of the largest eigengap of the correlation ma-
trices. The corresponding communities reflect the structural and functional char-
acteristics of each specific network, which can be verified by checking the nodes
of each community. Specifically, for the networks with known community struc-
ture, including the networks nba, journal, dolphin, football, ecoli and polbook, our
approach can accurately uncover such community structure. For the other three net-
works, the correlation matrices also give very promising results. In addition, for the
last three networks, large eigengaps are observed among the negative eigenvalues
of the normalized modularity matrix. This indicates that these networks contain an-
ticommunity structure. Actually, this phenomenon is also observed in many other
real world networks, which are not included in this thesis.

In addition, we also test the covariance matrices and the correlation matrices
on some real world complex networks with larger size, including the protein in-
teraction network and the word association network [45]. However, no significant
eigengap is observed in the spectrum of the covariance matrix and the correlation
matrix associated with these networks. This indicates that there is no scale which
is significantly superior to other scales and thus no partition of network is more
desired. However, unlike covariance matrices, the correlation matrices can charac-
terize the cohesiveness of the communities at each specific scale through the mag-
nitude of their eigenvalues. Generally speaking, an eigenvalue larger than 0.5 indi-
cates the existence of a cohesive node group, i.e., a community. Thus, according
to the magnitude of eigenvalues of the proposed correlation matrices, users can
choose the topological scale and partition of networks based on their application
needs.
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3.6 Conclusions

In this section, we have studied the problem of detecting multiscale community
structure in heterogeneous networks under a new framework of dimensionality re-
duction. This framework views community detection as a process of transforming a
high-dimensional representation of a network, where each node is one dimension,
to a low-dimensional representation, where each dimension corresponds to a com-
munity. This framework provides a unified explanation to the role of the Laplacian
matrix for graph partitioning and the modularity matrix for community detection.

Based on the new framework, we first revealed that existing methods based on
Laplacian and modularity matrices cannot effectively detect multiscale communi-
ties. We proposed to use the eigengaps of the covariance matrices to identify dif-
ferent topological scales. We then proposed a new method for detecting multiscale
communities which uses significant eigenvectors to project network nodes into low-
dimensional vectors and clusters those vectors into multiscale communities. Fur-
thermore, we revealed that the Laplacian matrix and the modularity matrix cannot
deal with the networks with heterogeneous node degrees. This problem is attributed
to the fact that these two matrices only take into account the translation and rotation
transformation. We proposed to use a rescaling transformation to handle heterogene-
ity. The correlation matrices resulted from the rescaling transformation are shown
to be effective in detecting community structure for highly heterogeneous networks.
Finally, we showed that although the Laplacian matrix and the modularity matrix
behave very differently, the performance of their corresponding correlation matri-
ces is almost identical. This further indicates that the rescaling transformation plays
a critical role at the detection of multiscale community structure in heterogeneous
networks.

Note that our framework is related to the eigenvalue decomposition and thus
its scalability depends of development of the eigenvalue decomposition technique.
However, real networks are usually very sparse and thus can alleviate the problem
of scalability.
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Chapter 4
Community Structure and Diffusion Dynamics
on Networks

4.1 Introduction

Community structure and network dynamics are two main research focuses in the
study of complex networks. In the last decade, many methods for community de-
tection have been proposed and applied successfully to some specific complex net-
works [1–7]. Meanwhile, network dynamics has also attracted much research atten-
tion [8, 9].

For community detection, each method requires, explicitly or implicitly, a def-
inition of community from different perspectives, such as centrality measure, link
density, percolation theory, and network compression. A well-known definition for
community is modularity, which is proposed by Newman et al. as a quality function
for a partition of network. Modularity is effective for detecting community structure
of many real world networks. However, as pointed out by Fortunato et al. [10], mod-
ularity suffers the resolution limit problem and this problem raises concerns about
the reliability of the communities detected through the optimization of modularity.
In [11], the authors claimed that the resolution limit problem is attributed to the
coexistence of multiple scale descriptions of the topological structure of network,
while only one scale is obtained through directly optimizing the modularity. In ad-
dition, the definition of modularity only considers the significance of link density
from the static topological structure of network, and it is unclear how the modular-
ity based community structure is correlated to the dynamics on network.

For network dynamics, in recent years, researchers have begun to investigate the
correlation between the community structure and the dynamics on networks. For
example, Arenas et al. pointed out that the synchronization reveals the topological
scale in complex networks [12]. In addition, the random walk on a network was also
extensively studied and used to uncover community structure of the network [5, 13].
In [14, 15], the random walk on a network is introduced for defining the distance
between network nodes, and an algorithm based on this distance is proposed for
partitioning the network into communities. In [16], the authors proposed quantifying
and ranking the quality of network partitions in terms of their stability, defined as
the clustered autocovariance in the random walk process taking place on network.
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In this chapter, we study the relation between community structure and dynamics
on networks by investigating the diffusion process taking place on network. We
note that some local equilibrium states appear before the diffusion process reaches
the final equilibrium state. The stability of these local equilibrium states can be
measured by their duration time in the diffusion process. Then, we demonstrate
that the intrinsic community structure is revealed by the stable local equilibrium
states of the diffusion process. Furthermore, we show that such community structure
can be directly identified through the optimization of network conductance, which
measures how easily the diffusion among different communities occurs.

In addition, we show that the diffusion dynamics on network is closely correlated
with the spectrum of the normalized Laplacian matrix. This inspires us to compare
spectral methods with five different matrices in terms of their effectiveness at identi-
fying the community structure of networks. The results of comparison demonstrate
that the normalized Laplacian matrix and the normalized modularity matrix signifi-
cantly outperform the other three unnormalized matrices at identifying the commu-
nity structure of networks. This indicates that the heterogeneity of node degree is a
crucial ingredient for the detection of community structure using spectral methods
and the matrices that do not properly account for it are doomed to fail or to produce
inaccurate results. Particularly, the modularity matrix does not gain desired benefits
from using the configuration model as reference network with the consideration of
the node degree heterogeneity.

4.2 Diffusion Dynamics on Networks

In this section, we describe the diffusion dynamics on networks. We first introduce
some notations used later. An undirected network G = (V ,E) with N nodes is of-
ten described in terms of its adjacency matrix A whose elements Axy denote the
strength of the link connecting nodes x and y. The strength of node x is denoted by
sx = ∑

y Axy . For a node set V1 ⊆ V , |V1| denotes the number of node in V1, the
volume of V1 is defined as vol(V1) = ∑

x∈V1
sx , and in_vol(V1) = ∑

x∈V1,y∈V1
Axy

is referred to as the inward volume of V1.

4.2.1 Diffusion Process on Networks

We start with investigating the diffusion process which describes the dynamics of a
random walker moving on network. At each time t , the random walker moves from
its current node x to one of its neighboring nodes y randomly with the probability
p(x → y) = Axy/sx . The dynamics of this process can be described as

dρx(t)

dt
= −r

∑

y

LT
xyρy(t), x = 1, . . . ,N, (4.1)
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where ρx(t) is the probability that the random walker resides at the node x at time t ,
and r is a parameter controlling the rate of diffusion process. The matrix L is the
normalized Laplacian matrix defined as L = I − D−1A, where I is the identity
matrix and D is a diagonal matrix with its diagonal elements Dxx = sx .

For any starting node, as time proceeds, the diffusion process described in Eq. 4.1
will definitely move towards equilibrium if the underlying undirected network is
connected and non-bipartite [17]. When the diffusion process is at equilibrium state,
it satisfies the so-called detailed balance condition [18], i.e., the probability that a
random walker walks through nodes x and y successively is equal to the probability
that this random walker walks through nodes y and x successively. Formally, the
detailed balance condition can be denoted by ρx(t)p(x → y) = ρy(t)p(y → x) and
the reduced form is ρx(t)/sx = ρy(t)/sy for undirected networks.

We explore all transients in the whole diffusion process instead of only the final
equilibrium state. During the diffusion process on a network, it is known that the
detailed balance condition is satisfied among highly interconnected nodes first and
then, sequentially, among less interconnected ones, until among all the nodes. In or-
der to evaluate how closely two nodes x and y satisfy the detailed balance condition
at time t , we introduce a measure cxy(t) as

cxy(t) =
〈∣∣∣∣

ρx(t)

sx
− ρy(t)

sy

∣∣∣∣

〉
, (4.2)

where 〈· · · 〉 averages over different realizations of the diffusion process with ran-
domly selected starting nodes. In practice, a pair of nodes x and y is said to satisfy
the detailed balance condition at the time t when cxy(t) is smaller than a given
threshold. A set V of nodes is said to satisfy the detailed balance condition if the
average value

∑
y∈V cxy(t)/|V | of cxy(t) for each node x is smaller than the given

threshold. Relative to the final equilibrium state, we say that the diffusion process is
at a local equilibrium state when several groups of nodes locally satisfy the detailed
balance condition. For convenience, we call the matrix cxy(t) as diffusion matrix.
Using the diffusion matrix, we can trace the different local equilibrium states during
the diffusion process.

As an example, we use cxy(t) to analyze the diffusion process on the H13-4
network, which is constructed according to Ref. [12]. This network has two prede-
fined hierarchical levels. The first hierarchical level consists of 4 groups of 64 nodes
and the second hierarchical level consists of 16 groups of 16 nodes. Figure 4.1 il-
lustrates the diffusion matrix cxy(t) of two transients corresponding to two different
local equilibrium states of the diffusion process. The squares along the diagonal sug-
gest that the corresponding groups of nodes satisfy the detailed balance condition.
These node groups reveal the predefined hierarchical levels in the H13-4 network.
For comparison, we further investigate the diffusion dynamics on the randomized
H13-4 network, which is constructed through shuffling the edges of the H13-4 net-
work depicted in Fig. 4.1. From Fig. 4.2a, we can see that there is no node group
locally satisfying the detailed balance condition.
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Fig. 4.1 Diffusion matrix for two transients in the diffusion process on the H13-4 network. Here,
each value of cxy(t) is the average over 10,000 realizations of the diffusion process with randomly
selected starting nodes. The parameter r = 0.01. Reprinted from Ref. [19], Copyright 2010, with
permission from IOP Publishing and SISSA

Fig. 4.2 Diffusion dynamics on the randomized H13-4 network. (a) The matrix cxy(t) of a tran-
sient in the diffusion process. Each value of cxy(t) is the average over 10,000 realizations of the
diffusion process with randomly selected starting nodes. The parameter r = 0.01. (b) The number
of node groups satisfying the detailed balance condition as a function of time t . Here, the threshold
for cxy(t) is set to be 1.0 × 10−4. Reprinted from Ref. [19], Copyright 2010, with permission from
IOP Publishing and SISSA

A phenomenon similar to what illustrated in Fig. 4.1 has also been observed in the
synchronization process. In [12], the authors claimed that this phenomenon reveals
the topological scale of networks. The authors also pointed out that local equilib-
rium state phenomenon in synchronization process is correlated with the spectrum
of the Laplacian matrix associated with the underlying network. According to the
characteristics of Laplacian matrix, as pointed out in [20], the community structure
revealed by synchronization process is heavily affected by the heterogeneous distri-
butions of degree and community size. In the following, we will show that the local
equilibrium state phenomenon is correlated with the spectrum of normalized Lapla-
cian matrix, which takes the heterogeneous degree and community size distribution
into account. Thus, the normalized Laplacian matrix outperforms the Laplacian ma-
trix at clustering the nodes of network [20].

A local equilibrium state is regarded as stable if the set of node groups satisfying
the detailed balance condition remains unchanged for a long duration in diffusion
process. To investigate the stability of local equilibrium states, we study the solution
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of Eq. 4.1 in terms of the normal modes ϕi(t), which reads

ρx(t) =
∑

i

Uxiϕi(t) =
∑

i

Uxiϕi(0)e−λirt , x = 1, . . . ,N, (4.3)

where λi are the eigenvalues of the transpose of normalized Laplacian matrix L, and
U is the eigenvector matrix whose ith column is the eigenvector ui corresponding
to eigenvalue λi . Given the starting node of diffusion process, the initial amplitudes
ϕi(0) can be determined according to Eq. 4.3 due to the eigenvector matrix U being
fixed, i.e., ϕi(0) only depends on the starting node of diffusion process. Note that,
as pointed out in Eq. 4.2, we investigate the average behavior of many different dif-
fusion processes with randomly selected starting nodes. Thus, the choice of starting
nodes does not affect the analysis results. Without loss of generality, we rank these
eigenvalues in the ascending order 0 = λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · ≤ λN .

As time proceeds in diffusion process, these normal modes ϕi(t) = ϕi(0)e−λirt

(i �= 1) will decay to zero. We use τi to denote the time when the normal mode ϕi(t)

decays to zero. Formally, τi is infinite. In practice, a threshold ε is usually used to
determine when ϕi(t) decays to zero, i.e., ϕi(t) < ε. In this case, we have

τi = 1

λi

× lnϕi(0) − ln ε

r
. (4.4)

All these moments τi (1 ≤ i ≤ N ) form a series of time intervals, respectively
[τN+1 = 0, τN), [τN , τN−1), . . . , [τi+1, τi), . . . , [τ3, τ2), [τ2, τ1 = ∞). These time
intervals divide the whole diffusion process into N stages. Specifically, the time
interval [τi+1, τi) is regarded as the ith stage. When the diffusion process is at the
ith stage, only the normal modes ϕj (t) (1 ≤ j ≤ i) have not decayed to zero. Thus
we have

ρx(t) ≈
i∑

j=1

Uxjϕj (t), x = 1, . . . ,N. (4.5)

This indicates that the value ρx(t) of node x at the ith stage can be represented
by the i-dimension coefficient vector of ϕj (t), i.e., (Ux1,Ux2, . . . ,Uxj , . . . ,Uxi).
According to Eqs. 4.2 and 4.5, given a threshold, we can identify the node groups
satisfying detailed balance condition through clustering the normalized i-dimension
vectors of (Ux1,Ux2, . . . ,Uxj , . . . ,Uxi) using, for example, the k-means clustering
method. The set of such node groups is unchanged due to the non-decayed normal
modes being fixed during the same stage. This means that a local equilibrium state
is stable if the corresponding stage persists for a long time.

Taking the H13-4 network as an example, the left panel of Fig. 4.3 shows the
different local equilibrium states of diffusion process and the right panel illustrates
the different stages in terms of the number of non-decayed normal modes of diffu-
sion process. Through comparing the two panels, we see that each time one normal
mode decays to zero, the diffusion process changes from a local equilibrium state
to a new one. It is observed that two stable local equilibrium states with long du-
rations emerge in diffusion process. The node groups corresponding to these two
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Fig. 4.3 Relation between node groups and non-decayed normal modes. Left panel: the number
of node groups satisfying the detailed balance condition as a function of time t . Here, the threshold
for cxy(t) is set to be 1.0 × 10−4. Right panel: the number of non-decayed normal modes in terms
of the time t . Reprinted from Ref. [19], Copyright 2010, with permission from IOP Publishing and
SISSA

states clearly reveal the intrinsic community structure of H13-4 network. In addi-
tion, from Fig. 4.2b, we can see that no stable local equilibrium state appears in the
diffusion process taking place on the randomized H13-4 network. This is reason-
able since it is commonly believed that randomized network have no community
structure. All these findings suggest that the appearance of stable local equilibrium
states in a diffusion process indicates the existence of community structure in the
underlying network.

4.2.2 Network Conductance and Community Structure

Note that diffusion occurs much more frequently within node groups than among
them when the diffusion process is at a stable local equilibrium state. This indicates
that there exists a high transitive cohesion inside such node groups. The community
structure comprised of these node groups could well reflect the diffusion dynamics
on the underlying network. Regarding such community structure as a partition of a
network, we measure the quality of the partition through introducing the conduc-
tance of network, which reflects how easily the diffusion occurs among different
communities.

For a given partition P = {V1, . . . , Vk}, conductance is defined as the aver-
age departure probability, pdept(Vi), of all the communities Vi , that is C(P) =
1
k

∑k
i=1 pdept(Vi). The departure probability of a community Vi is the probability

that a random walker departs from Vi in the next time step given that it resides at Vi

when the diffusion process is at the final equilibrium state. Formally, the departure
probability of Vi can be computed by using

pdept(Vi) =
∑

x∈Vi,y∈V i
ρx(∞)p(x → y)

∑
x∈Vi

ρx(∞)
= 1 − in_vol(Vi)

vol(Vi)
, (4.6)
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where ρx(∞) = sx/vol(V ) is the stationary distribution which characterizes the fi-
nal equilibrium state of the diffusion process. In this way, the conductance is for-
mally denoted by

C(P) = 1

k

k∑

i=1

(
1 − in_vol(Vi)

vol(Vi)

)
. (4.7)

Actually, it can be proved that the community structure associated with the stable
local equilibrium state can be exactly identified through minimizing the conductance
directly. Without loss of generality, we assume that the stable local equilibrium state
emerges at the kth stage in the diffusion process. As mentioned above, the com-
munity structure associated with this state can be identified through clustering the
normalized k-dimension vectors of (Ux1,Ux2, . . . ,Uxi, . . . ,Uxk). Further, through
the matrix trace maximization method [21], it can be proved that the optimization
of the conductance for a fixed k can be done through clustering the top k eigenvec-
tors of the transpose of the normalized Laplacian matrix, corresponding to the 1st to
kth columns of U . Therefore, the optimization of conductance provides an effective
way to identify the community structure associated with the stable local equilibrium
state.

Now we clarify the difference between the conductance and the earlier measure
for the quality of network partition from the perspective of a random walk on net-
works. Firstly, as pointed out in [22], as a measure of the quality of network parti-
tion, the modularity can be described as the difference between the probability that a
random walker resides in the same community on two successive time steps and the
probability that two independent random walkers both resides in the same commu-
nity. Secondly, in [16], through considering the random path with length t instead of
the length 1 for the modularity and the length of infinity for the spectral partition, the
authors proposed that the stability of network partitions be defined as the clustered
autocovariance of the random walk. This stability provides a general framework for
quantifying and ranking the quality of network partitions from the perspective of
the whole network, i.e., it characterizes the fraction of the within-community ran-
dom paths with length t with respect to all the random paths of length t . However,
the conductance considers the quality of network partition from the perspective of
each community instead of the whole network, i.e., it reflects the fraction of within-
community random paths with respect to all the random paths departing solely from
the community considered. This provides the advantage for handling the heteroge-
neous distribution of community size (or volume) which is common to real world
networks. As follows, the application of the conductance optimization method to the
benchmarks of Lancichinetti et al. also demonstrates that our method can effectively
handle the heterogeneous distribution of community size.

To test the effectiveness of our method for community detection based on the
optimization of conductance, we utilize the benchmark proposed by Lancichinetti
et al. in [23]. This benchmark provides networks with heterogeneous distributions
of node degree and community size. Thus it poses a much more severe test of com-
munity detection algorithms than standard benchmarks. Many parameters are used
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Fig. 4.4 Experimental results on a benchmark network. For the benchmark network, the mixing
ratio μ = 0.3 and the number of communities is 30. (a), (b) The most stable local equilibrium and
the different stages of the diffusion process. (c) Comparison between the conductance optimization
method and the modularity optimization method on benchmark networks. Each point corresponds
to an average over 100 network realizations. Reprinted from Ref. [19], Copyright 2010, with per-
mission from IOP Publishing and SISSA

to control the generated networks in this benchmark: the number of nodes N , the
average node degree 〈k〉, the maximum node degree max_k, the mixing ratio μ, the
exponent of the power law node degree distribution t1, the exponent of the power
law distribution of community size t2, the minimum community size min_c, and the
maximum community size max_c. In our tests, we use the default parameter con-
figuration where N = 1000, 〈k〉 = 15, max_k = 50, t1 = 2, t2 = 1, min_c = 20, and
max_c = 50. By tuning the parameter μ, we test the effectiveness of our method on
the networks with different fuzziness of communities. The larger the parameter μ,
the fuzzier the community structure of the generated network. In addition, we adopt
the normalized mutual information (NMI) [24] in order to compare the partition
found by the algorithms with the answer partition. The larger the NMI is, the more
effective the tested algorithm.

Figure 4.4a–b illustrate the most stable local equilibrium state and the differ-
ent stages of the diffusion process on the benchmark network with the mixing ratio
μ = 0.3 and the number of communities equal to 30. The squares along the diagonal
indicate the predefined communities in the network. The number of these communi-
ties is clearly revealed by the most stable local equilibrium state. Figure 4.4c shows
the comparison between the conductance optimization method and the modularity
optimization method in terms of the NMI on the benchmark network. When the
community structure is evident, both our method and the modularity optimization
method (e.g., the fast unfolding algorithm [6] and the spectral method [4]) can ac-
curately identify the community structure. However, when the community structure
becomes fuzzier, the performance of the modularity optimization method deterio-
rates while our method still achieves rather good results.

In addition, we also tested the conductance optimization method on many real
world networks which are widely used to evaluate community detection methods.
These networks include the social network of Zachary’s karate club [25], the social
network of dolphins of Lusseau et al. [26], the college football network of the United
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Fig. 4.5 Illustration of the conductance optimization method on a real world network. (a) The
friendship network of the karate club. Colors are used to differentiate the communities uncovered
by the conductance optimization method when considering the stage (I). Shapes, circle and square,
are used to distinguish the communities corresponding to the stage (II) and the real social split of
this network observed by Zachary. (b) The different stages of the diffusion process taking place on
the karate club network. Two most stable equilibrium states are marked with (I) and (II). Reprinted
from Ref. [19], Copyright 2010, with permission from IOP Publishing and SISSA

States [1], the journal index network constructed in [5], and the network of political
books [4]. For all these networks, the conductance optimization method obtains ex-
tremely good results. Taking Zachary’s network as an example, Fig. 4.5b illustrates
the different stages of the diffusion process taking place on the network. The two
most stable local equilibrium states are marked (I) and (II), and the corresponding
communities are depicted in Fig. 4.5a. Besides the stages (I) and (II), another rel-
atively stable state can be also observed during the diffusion process, as shown in
Fig. 4.5b. The corresponding three communities are respectively the one comprised
of all the circle nodes and two communities formed by the square nodes but with
different colors, as shown in Fig. 4.5a. Actually, as regards the three stable states,
it is really hard to say which the best one is. The duration time of each state may
provide an effective candidate measure for the significance of network divisions.

4.3 Comparative Analysis of Spectral Methods for Community
Detection

In the previous section, we have shown that the spectrum of normalized Laplacian
matrix provides critical indicator for the detection of community structure asso-
ciated with the diffusion dynamics. This inspires us to study the general spectral
method for community detection. In this section, we will give a comparative analy-
sis of the spectral methods based on five different matrices, namely adjacency ma-
trix, standard Laplacian matrix, normalized Laplacian matrix, modularity matrix
and correlation matrix.
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4.3.1 The Matrices for Spectral Analysis

The topology of network is often described in terms of adjacency matrix. Based on
the adjacency matrix, several other matrices are formulated to investigate the proper-
ties of network, including the standard Laplacian matrix, the normalized Laplacian
matrix, the modularity matrix and the correlation matrix. Existing studies indicate
that the spectrum of these matrices sheds light on the community structure of net-
work. In the following, we first give the definition of these matrices and briefly in-
troduce the methods to detect the community structure using the spectrum of these
matrices.

• Adjacency matrix. The elements Aij of an adjacency matrix A denote the strength
of the edge connecting the nodes i and j if such an edge exists, and 0 otherwise.
(We restrict our attention in this paper to undirected networks.) In [27], the au-
thors proposed that the spectrum of the adjacency matrix can unravel the number
of communities. Specifically, the eigenvalues of the adjacency matrix is ranked in
descending order, i.e., λA

1 ≥ λA
2 ≥ · · · ≥ λA

i ≥ · · · ≥ λA
n , where n is the number of

network nodes. Each two successive eigenvalues form an eigengap, the ith eigen-
gap being between λA

i and λA
i+1 (1 ≤ i ≤ n − 1). The length of the ith eigengap

is λA
i − λA

i+1. Then, the number of communities is indicated by the place of the
largest eigengap, i.e., i is the number of communities if the largest eigengap is
the ith one.

• Standard Laplacian matrix. The standard Laplacian matrix is defined as L =
D −A, where D is a diagonal matrix with the diagonal element Dii being the de-
gree of the node i. As to the standard Laplacian matrix, the Fiedler’s vector [28]
has been well studied and widely used for two-way network partition. Fiedler’s
vector is the eigenvector of the standard Laplacian matrix corresponding to the
second smallest eigenvalue. More importantly, the standard Laplacian matrix is
often used to characterize the synchronization dynamics on networks [12, 29].
In [12], Arenas et al. pointed out that the spectrum of the standard Laplacian
matrix reveals the intrinsic topological scales. The eigenvalues are ranked in as-
cending order and the length of the ith eigengap is defined as logλL

i+1 − logλL
i

(2 ≤ i ≤ n − 1).1 Then, i is viewed as the appropriate candidate for the number
of intrinsic communities if the ith eigengap is largest.

• Normalized Laplacian matrix. The normalized Laplacian matrix is often defined
as N = I −T , where I is the identity matrix and T is the transition matrix, which
is defined as T = D−1A with the elements Tij being the probability that a random
walker moves to the node j from the node i. The normalized Laplacian matrix is
named after the fact that it can be written in the form N = D−1L, i.e., normal-
izing the standard Laplacian matrix with the diagonal matrix D of node degrees.
In [30], the authors claimed that the spectrum of the transition matrix T can be

1In this paper, we also tested the alternative eigengap defined as λL
i+1 − λL

i (1 ≤ i ≤ n − 1), and
the results are similar.
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used to detect the community structure of networks. Actually, if λ is an eigen-
value of the transition matrix, 1 − λ is an eigenvalue of the normalized Laplacian
matrix with the same eigenvector. Furthermore, the normalized Laplacian matrix
is closely correlated to the diffusion dynamics on networks. Through investigat-
ing the diffusion dynamics on networks, Cheng and Shen pointed out [19] that
the community structure can be identified through the eigenvalues and eigenvec-
tors of the normalized Laplacian matrix. Specifically, the eigenvalues are ranked
in ascending order and the length of the ith eigengap is defined as λN

i+1 − λN
i

(1 ≤ i ≤ n − 1). Then, i is viewed as the appropriate candidate for the number of
intrinsic communities if the ith eigengap is largest.

• Modularity matrix. The modularity matrix is proposed by Newman as a spectral
explanation for the well-known measure, namely modularity, for the quality of
network partition [4, 31]. Its elements are defined as

Bij = Aij − kikj

2m
,

where ki = ∑
j Aij is the strength of the node i and 2m = ∑

ij Aij = ∑
i ki is the

total strength of all the nodes. In [31], the eigenvectors corresponding to positive
eigenvalues are utilized to uncover the community structure of networks. The
number of communities can be determined according to the magnitude of the
positive eigenvalues. Here, we rank the eigenvalues in descending order and the
length of the ith eigengap is defined as λB

i−1 − λB
i (2 ≤ i ≤ n). Then, i is taken

as the number of communities if the ith eigengap has the largest length. Note
that, for the purpose of the detection of community structure, only the eigengaps
among positive eigenvalues are considered. If all the eigenvalues are negative, no
natural community structure exists, i.e., all the nodes belong to a sole community
and the community number is 1. In [32], the modularity matrix is shown to be the
biased covariance matrix of network and the spectrum of the covariance matrix is
investigated for the detection of the multiscale community structure.

• Correlation matrix. The correlation matrix of network characterizes the correla-
tion coefficients between pairs of nodes. Its element Cij are defined as

Cij = Bij√
ki − k2

i /2m
√

kj − k2
j /2m

.

In [32], the correlation matrix is used to uncover the multiscale community struc-
ture of networks. Specifically, the eigenvalues are ranked in descending order and
the length of the ith eigengap is defined as λC

i−1 − λC
i (2 ≤ i ≤ n). The same to

the modularity matrix, only the eigengaps among positive eigenvalues are con-
sidered. Then, i is taken as the number of communities if the ith eigengap has the
largest length. A similar matrix is called the symmetric normalized Laplacian ma-
trix, whose element at the place (i, j) is defined as δij − Aij /

√
ki

√
kj , where δij

is 1 when i = j and 0 otherwise. This matrix is often used in spectral clustering
algorithms together with the two aforementioned Laplacian matrices [20].
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In summary, the number of communities can be determined according to the
eigengaps of the aforementioned five matrices. Actually, the community struc-
ture can be further identified using the eigenvectors of these matrices. Generally
speaking, only several eigenvectors are utilized to project each node into a low-
dimensional node vectors, and then the community structure is identified through
clustering the node vectors using, for example, the k-means clustering method.
Specifically, the selected eigenvectors correspond to the largest nc eigenvalues for
the adjacency matrix, the smallest nc eigenvalues for the standard Laplacian matrix
and the normalized Laplacian matrix, the largest nc − 1 eigenvalues for the mod-
ularity matrix and the correlation matrix. Here, nc is the number of communities.
These selected eigenvectors are stacked as columns of a matrix and the transpose of
the ith row of this matrix is taken as the projected node vector corresponding to the
node i. The community structure is then detected through clustering the projected
node vectors.

Before proceeding, we first clarify why we choose the general method for com-
munity detection using the k-means clustering method. On one hand, this paper only
considers the performance of the aforementioned five matrices rather than the spe-
cific implementation of spectral methods. Thus, it is fair and reasonable to choose
the general method, which determines the community number according to the spec-
trum of matrices and identifies the community structure using the eigenvectors of
the matrices. On the other hand, the k-means clustering method is the common prac-
tice for the spectral clustering [20]. Furthermore, the k-means clustering method is
facilitated by the projected node vector subspace spanned by the top eigenvectors
of matrices [33]. Thus, using the k-means clustering on the node vectors provides a
competitive candidate among all the spectral methods for the detection of commu-
nity structure.

Now, as an example, we illustrate the spectral methods through application on the
Zachary’s karate club network, which has been widely used to evaluate the commu-
nity detection methods. This network characterizes the social interactions between
the individuals in a karate club at an American university. A dispute arose between
the club’s administrator and its principal karate teacher, and as a result the club even-
tually split into two smaller clubs, centered around the administrator and the teacher
respectively. The network and its fission is depicted in Fig. 4.5a. The administrator
and the teacher are represented by nodes 1 and 33 respectively. Figure 4.6 shows the
spectrum of the aforementioned five matrices associated with the Zachary’s karate
club network. The largest eigengap of the adjacency matrix, the standard Laplacian
matrix and the modularity matrix indicate that the optimal number of community
is 2. The corresponding community structure is consistent with the real split of the
network. However, as indicated by the largest eigengap of the normalized Laplacian
matrix and the correlation matrix, 4 is the optimal number of communities. The
corresponding four communities are shown in Fig. 4.5a differentiated with colors,
which is the results of many existing methods for community detection including
the modularity maximization.

As illustrated by the previous example, the five matrices give rise to two differ-
ent resulting partitions as the community structure of the network. Actually these
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Fig. 4.6 The spectrum of five matrices associated with the Zachary’s karate club network. This
five matrices are respectively (a) the adjacency matrix, (b) the standard Laplacian matrix, (c) the
normalized Laplacian matrix, (d) the modularity matrix and (e) the correlation matrix. For each
matrix, the largest eigengap is marked with an elbow line. Reprinted from Ref. [34], Copyright
2010, with permission from IOP Publishing and SISSA

Fig. 4.7 The spectrum of five matrices associated with the H13-4 network. The five matrices are
respectively (a) the adjacency matrix, (b) the standard Laplacian matrix, (c) the normalized Lapla-
cian matrix, (d) the modularity matrix and (e) the correlation matrix. Reprinted from Ref. [34],
Copyright 2010, with permission from IOP Publishing and SISSA

two partitions correspond to two different topological scales of the network. The
multiple scale of topological description is a common phenomenon in real-world
networks [10, 11, 32, 35–37]. Actually, the multiscale community structure can be
revealed through considering more eigengaps besides the largest one among the
eigenvalues of the aforementioned five matrices. As an example, we illustrate the
detection of the multiscale community structure of the H13-4 network, which is
constructed according to [12]. This network has two predefined hierarchical levels.
The first hierarchical level consists of 4 groups of 64 nodes and the second hierar-
chical level consists of 16 groups of 16 nodes. On average, each node has 13 edges
connecting to the nodes in the same group at the second hierarchical level and has
4 edges connecting to the nodes in the same group at the first hierarchical level.
This explains the name of such kind of networks. In addition, the average degree
of each node is 18. According to the construction rules of the H13-4 network, the
two hierarchical levels constitute the different topological descriptions of the com-
munity structure of the H13-4 network at different scales. As shown in Fig. 4.7,
the community numbers associated with the two predefined topological scales are
clearly revealed by the top two largest eigengaps occurring in the spectrum of the
five matrices. The resulting communities are exactly the predefined node groups un-
der the two hierarchical levels. However, according to the length of eigengap, the
standard Laplacian matrix seems to prefer the first hierarchical level while the other
four matrices tend to reveal the second hierarchical level.



86 4 Community Structure and Diffusion Dynamics on Networks

Fig. 4.8 The spectrum of five matrices associated with the randomized H13-4 network. The five
matrices are respectively (a) the adjacency matrix, (b) the standard Laplacian matrix, (c) the nor-
malized Laplacian matrix, (d) the modularity matrix and (e) the correlation matrix. Reprinted from
Ref. [34], Copyright 2010, with permission from IOP Publishing and SISSA

Fig. 4.9 The clique circle
network as a schematic
example. Each circle
corresponds to a clique,
whose size is marked by its
label ks or kb . Reprinted from
Ref. [34], Copyright 2010,
with permission from IOP
Publishing and SISSA

Furthermore, we apply all these matrices to the random network. For compar-
ison, we construct the random network through shuffling the edges of the H13-4
network. Figure 4.8 shows the spectrum of the five matrices associated with the ran-
domized H13-4 network. The spectrum of these matrices indicates that the number
of communities is 1 or 256, i.e., all the nodes belong to the same community or
each node forms a community. These findings are reasonable since it is commonly
believed that randomized networks have no community structure.

The previous examples show that the aforementioned five matrices are both ef-
fective at revealing the community structure of network. Note that, as to the example
H13-4 network, the nodes have approximately the same degree and the communities
at a specific scale are of the same size. However, the real world networks usually
have heterogeneous distributions of node degree and community size. Thus it will be
more convincing to test these matrices on networks with heterogeneous distributions
of node degree and community size. Before we give such a test in the subsequent
section, using a schematic network, we first illustrate the difference between the ef-
fectiveness of these matrices. The schematic network is often called the clique circle
network as depicted in Fig. 4.9. Generally speaking, the intrinsic community struc-
ture corresponds to the partition where each clique is taken as a community, which is
the sole intrinsic scale existing in this network. As shown in Fig. 4.10, the sole topo-
logical scale is exactly revealed by the spectrum of the standard Laplacian matrix,
the normalized Laplacian matrix and the correlation matrix. However, two scales
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Fig. 4.10 The spectrum of five matrices on the clique circle network with ks = 10 and kb = 20.
These five matrices are respectively (a) the adjacency matrix, (b) the standard Laplacian matrix,
(c) the normalized Laplacian matrix, (d) the modularity matrix and (e) the correlation matrix.
Reprinted from Ref. [34], Copyright 2010, with permission from IOP Publishing and SISSA

Fig. 4.11 The spectrum of five matrices on the clique circle network with clique size ks = kb = 10.
These matrices are respectively (a) the adjacency matrix, (b) the standard Laplacian matrix, (c) the
normalized Laplacian matrix, (d) the modularity matrix and (e) the correlation matrix. Reprinted
from Ref. [34], Copyright 2010, with permission from IOP Publishing and SISSA

are observed when we investigate the community structure of this network using the
spectrum of the adjacency matrix and the modularity matrix. One scale corresponds
to the intrinsic scale of the network, and the other corresponds to the partition di-
viding the network nodes into 5 groups, which is not desired. In [10], Fortunato
et al. pointed out the resolution limit problem of the modularity through investigat-
ing the modularity maximization on such a clique circle network with each clique
having the same size. However, as shown in Fig. 4.11, when all the cliques have the
same size (i.e., the homogeneous node degree), the intrinsic community structure
can be exactly revealed by all the five matrices, including the modularity matrix.
This indicates that the resolution limit problem of the modularity is not the same to
the problem studied in this paper. Specifically, the resolution limit problem means
that there exists an intrinsic scale beyond which the smaller communities cannot be
detected through maximizing the modularity. As to the heterogeneity problem of
the modularity matrix considered in this paper, we focus on whether the modular-
ity matrix can reveal the natural community structure, which can be detected using
the spectral clustering method instead of the modularity maximization. In sum, the
resolution limit problem talks about the maximization of modularity while the het-
erogeneity problem takes root in the modularity matrix. Thus we claim that it is
crucial to deal with the heterogeneous degree when using the spectral methods for
community detection.
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4.3.2 Tests on Benchmark Networks

In this section, we show the effectiveness of the aforementioned five matrices at
identifying the community structure on benchmark networks. We utilize the bench-
mark proposed by Lancichinetti et al. [23]. This benchmark provides networks with
heterogeneous distributions of node degree and community size. Thus it poses a
much more severe test to community detection algorithms than Newman’s standard
benchmark [2]. Many parameters are used to control the generated networks in this
benchmark: the number of nodes N , the average node degree 〈k〉, the maximum
node degree max_k, the mixing ratio μ, the exponent γ of the power law distribu-
tion of node degree, the exponent β of the power law distribution of community size,
the minimum community size min_c, and the maximum community size max_c. In
our tests, we use the default parameter configuration where N = 1000, 〈k〉 = 15,
max_k = 50, min_c = 20, and max_c = 50. To test the influence from the distri-
bution of node degree and community size, we adopt four parameter configurations
for γ and β , respectively being (γ,β) = (2,1), (γ,β) = (2,2), (γ,β) = (3,1) and
(γ,β) = (3,2). Finally, by tuning the parameter μ, we test the effectiveness of the
five matrices on the networks with different fuzziness of community structure. The
larger the mixing ratio parameter μ, the fuzzier the community structure of the gen-
erated network.

The first test focuses on whether the number of communities can be correctly
identified. Note that each benchmark network has only one significant topological
scale according to the construction rules. Thus we only consider whether such a
scale can be revealed by the largest eigengap in the spectrum of the five matrices.
For each given mixing ratio μ, 100 benchmark networks are generated. For each
network, we use the spectrum of the aforementioned five matrices to identify the
number of communities. The performance of each method is characterized by the
fraction of benchmark networks whose community number is correctly identified.
As shown in Fig. 4.12, the best results are obtained by the methods based on the nor-
malized Laplacian matrix and the correlation matrix, which actually give the identi-
cal results for all the four used parameter configurations. When the mixing ratio μ is
smaller than 0.5, i.e., the communities are defined in the strong sense [38], the num-
ber of communities can be accurately identified by investigating the spectrum of the
normalized Laplacian matrix or the correlation matrix. Even when μ is larger than
0.5 (e.g., 0.55), these two matrices still give rather good results. The adjacency ma-
trix and the modularity matrix exhibit rather similar effectiveness, obtaining very
good results when the community structure is evident and deteriorating when the
community becomes fuzzier with the increase of the mixing ratio μ. Compared with
the other four matrices, the standard Laplacian matrix gives the worst results, failing
to identify the correct number of communities even when the community structure
is quite evident. In addition, the exponent γ of the power law distribution of node
degree affects the effectiveness of the matrices except the normalized Laplacian ma-
trix and the correlation matrix. The possible reason is that these two matrices take
into account the distribution of node degree through the normalization operation in
their definition. Finally, as shown in Fig. 4.12, it seems that all these five matrices
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Fig. 4.12 Effectiveness comparison at identifying community number. The benchmark networks
are generated with four different parameter configurations. For each parameter configuration, 100
generated networks are used. The corresponding matrices are respectively the adjacency matrix
(�), the standard Laplacian matrix (©), the normalized Laplacian matrix (�), the modularity ma-
trix (♦) and the correlation matrix (�). Reprinted from Ref. [34], Copyright 2010, with permission
from IOP Publishing and SISSA

are not very sensitive to the exponent β of the power law distribution of community
size.

The second test turns to the performance of the eigenvectors of the five tested
matrices. Given the number of communities, we investigate whether the predefined
community structure can be identified using the eigenvectors of the five tested ma-
trices. The corresponding community detection methods cluster the projected node
vectors using the k-means clustering method. Each method produces a network par-
tition to represent the community structure. To compare the partition found by these
methods with the answer network partition, we adopt the normalized mutual infor-
mation (NMI) [24] to reflect the effectiveness of each method. The larger the NMI
is, the more effective the tested method. As shown in Fig. 4.13, the same to the
first test, the normalized Laplacian matrix and the correlation matrix give the best
and almost identical results. The adjacency matrix and the modularity matrix also
exhibit the similar performance, being a little worse than the normalized Laplacian
matrix and the correlation matrix. As to the standard Laplacian matrix with the worst
performance, the NMI even reaches 0.4 when the mixing ratio μ is up to 0.6 with
γ = 2. Furthermore, the heterogeneous distribution of the node degree affects the
NMI of the spectral methods based on the adjacency matrix, the modularity matrix
and especially the standard Laplacian matrix.

In summary, the normalized Laplacian matrix and the correlation matrix out-
performs the other three matrices both at identifying the number of communities
according to the spectrum and identifying the community structure using the top
eigenvectors. This indicates that it is crucial to take into account the heterogeneous
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Fig. 4.13 Effectiveness comparison at identifying intrinsic community structure. The benchmark
networks are generated with four different parameter configurations. Each point corresponds to an
average over 100 network realizations for each parameter configuration. The corresponding matri-
ces are respectively the adjacency matrix (�), the standard Laplacian matrix (©), the normalized
Laplacian matrix (�), the modularity matrix (♦) and the correlation matrix (�). Reprinted from
Ref. [34], Copyright 2010, with permission from IOP Publishing and SISSA

distribution of node degree when using spectral analysis for the detection of com-
munity structure. In addition, although the modularity considers the heterogene-
ity through introducing the null-model reference network (i.e., the configuration
model), as shown in [32], this operation is in fact a kind of translation transforma-
tion and thus cannot alleviate the influence on the detection of community structure
from the heterogeneous distribution of node degree. This phenomenon can be seen
from the experimental results on the Lancichinetti’s benchmark networks, i.e., the
modularity matrix obtains very similar results to the adjacency matrix.

4.4 Conclusions

In this chapter, we have studied the diffusion dynamics on networks and the detec-
tion of community structure associated with network dynamics.

By analyzing the transients in diffusion process occurring on networks, we find
that several stable local equilibrium states emerge during the diffusion process on
networks with community structure. These stable states reveal the intrinsic com-
munity structure of the underlying networks. Furthermore, as pointed out in this
chapter, the spectrum of normalized Laplacian matrix provides critical indicators
for the detection of community structure associated with diffusion dynamics on net-
works. Based on this finding, we proposed a conductance optimization method to
identify the community structure, which naturally reflects the diffusion capability
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of the network. This provides new insights into the number of communities and the
multiple topological scales of complex network.

Besides the normalized Laplacian matrix, we conduct a comparative analysis of
five matrices on the benchmark networks with heterogeneous distributions of node
degree and community size. This comparison is fair and meaningful since the per-
formance of spectral methods heavily relies on the characteristics of the underlying
matrices. The comparison is carried out from two perspectives. The former one fo-
cuses on whether the number of intrinsic communities can be exactly identified
according to the spectrum of these five matrices. The latter evaluates the effective-
ness of these matrices at identifying the intrinsic community structure using their
eigenvectors. Test results show that the normalized Laplacian matrix and the corre-
lation matrix significantly outperform the other three matrices. The possible reason
is that these two matrices are both normalized using the degree of nodes. Thus we
can conclude that it is crucial to take into account the heterogeneous distribution of
node degree when using spectral analysis for the detection of community structure.
In addition, to our surprise, the modularity matrix exhibits very similar performance
to the adjacency matrix, which indicates that the modularity matrix does not gain
desired benefits from using the configuration model as reference network with the
consideration of the node degree heterogeneity.
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Chapter 5
Exploratory Analysis of the Structural
Regularities in Networks

5.1 Introduction

Network provides a powerful tool for representing the structure of complex systems.
These networks include social networks [1, 2], information networks [3, 4], and
biological networks [1, 5]. Much of recent research on networks actually aims to
understand the structural regularities and further to reveal the relationship between
such structural regularities and the function of networks [2, 6]. For example, as a
widely-studied structural characteristic of network, community structure is of high
interest because communities often correspond to functional units such as pathways
for metabolic networks and collections of pages on a similar topic on the Web.

Community structure is a kind of assortative structure, in which nodes are di-
vided into groups such that the members within each group are mostly connected
with each other [7]. Contrary to community structure, multipartite structure is an-
other important kind of structural regularities observed in real world networks [8].
Multipartite structure means that nodes of network can be divided into groups such
that most of edges are across different groups. Beside these salient structural char-
acteristics, other types of structure are also observed in real world networks, such as
hierarchical structure and core-periphery structure.

However, existing methods mostly presume that certain type of structure exists
in the target network and then devote to detect such structure. This raises concerns
to the reliability of the detected structure. On one hand, the assumed structure may
not match the intrinsic structure of the target network and thus these methods are not
applicable to these situations. On the other hand, several real world networks con-
tain multiple types of structure simultaneously. Most existing methods are designed
for certain type of structure and thus cannot detect the broad types of structure. In
addition, several unknown types of structure may also exist in networks and a de-
sired method should be able to detect such structure as well. Thus, it is the time to
explore multiple types of structural regularities in networks.

In this chapter, we will devote to the exploratory analysis of structural regularities
in networks. We first study the networks with only positive links using a blockmodel.
Then, we move to explore the signed networks, i.e., networks with both positive and
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negative links. To deal with sign of links, we extend Newman’s mixture model by
separately modeling positive links and negative links.

5.2 Regularity Exploration in Networks with Only Positive Links

In this section, we focus on exploring the intrinsic structural regularities in network
by dividing network nodes into groups such that the members of each group have
similar patterns of connections to other groups. A general stochastic blockmodel
is proposed to model the network structure. In this model, node groups are repre-
sented by unobserved or hidden quantities and the relationships among groups are
explicitly modeled by a block matrix as the traditional blockmodels. Then, using the
expectation-maximization algorithm, we fit the model to specific network data and
detect intrinsic structural regularities of the network without prior knowledge of the
type of regularity existing in the network. Compared with existing models, the most
prominent strength of our model is the high flexibility. This strength enables it to
possess the advantages of existing models and to overcome their shortcomings in a
unified way. As a result, not only broad types of structure can be detected, but also
the type of identified structure can be indicated by the block matrix. In addition, our
model can tell us the centrality of the node in each group and the mixed membership
of nodes as well.

Tests on a number of artificial and real world networks demonstrate that our
model outperforms the state-of-the-art models at shedding light on the structural
regularities of network, including the overlapping community structure, multipartite
structure and several other types of structure which are beyond the capability of
existing models.

5.2.1 Background

Recently, several probabilistic generative models are proposed to model network
data and to explore the structural regularities [9, 10]. These models view network
structure as observed quantities and take communities as hidden groups of nodes.
The communities are then identified by fitting the model to the observed network
structure. For example, Ren et al. [11] proposed a probabilistic model to uncover
the overlapping community structure. This model assumes that the two end nodes
of each edge are from the same community and this assumption is satisfied by the
fuzzy membership of nodes. Zhang et al. [12] applied the Latent Dirichlet Alloca-
tion (LDA, a well-known generative model) to social network analysis and gave a
method to detect community structure. The common drawback of these two models
is that they can only uncover the community structure and fail to reveal other types
of structural regularities, e.g., multipartite structure.
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To characterize the hierarchical organization of networks, Clauset et al. proposed
the hierarchical random graph model, which is capable of expressing both assor-
tative and disassortative structure [13]. To explore more broad types of structure,
Newman et al. proposed a mixture model for exploratory analysis of network struc-
ture [14]. In this model, the nodes with similar connection preference rather than the
highly connected nodes are classified into the same group. In such a general way,
this model can reveal several other kinds of structural regularities beyond commu-
nity structure. However, this model fails to tell us which kind of structural regular-
ities has been identified. More importantly, this model may produce a result which
is a mixture of several types of structure, and thus the identified structure may not
provide clear information about the structural regularities. The shortcoming of this
model is attributed to that it only models the relationship between groups and nodes
rather than the relationship among groups. Stochastic blockmodel provides an ap-
propriate alternative to the mixture model for exploring broad range of structural
regularities. Karrer et al. utilized a degree-corrected stochastic blockmodel [15] to
investigate community structure of network. Airoldi et al. gave a mixed membership
stochastic blockmodel [16] to model network data. These works have demonstrated
that stochastic blockmodel is a good choice for exploring regularities of network.
However, the effectiveness of these models is limited by their inflexible model as-
sumptions, e.g., the hard partition assumption or neglecting the directionality of
edges.

5.2.2 The Stochastic Blockmodel

Generally, a network with n nodes can be represented mathematically by an adja-
cency matrix A with elements Aij = 1 if there is an edge from node i to node j and
0 otherwise. For weighted networks, Aij is generalized to represent the weight of
the edge from i to j .

To investigate the structural regularities in network, we suppose that the n nodes
of the network fall into c groups whose memberships are unknown, i.e., we cannot
observe or measure them directly. Here, we propose a statistical model to infer the
group membership from the observed network structure.

The model we used is a kind of stochastic blockmodel. Blockmodel is a gen-
erative model and has a long tradition of study in the social science and computer
science. For a standard blockmodel, a c × c matrix ω is generally adopted such that
the matrix element ωrs denotes the probability that a randomly selected edge con-
nects group r to group s, i.e., the tail node of the edge is from group r and the head
node is from s. The advantage of blockmodel lies in that the matrix ω explicitly
characterizes various types of connecting patterns among groups.

In the standard blockmodel, the nodes in the same group are identical, i.e., each
node in a group has equal probability to be the end node of an edge adjacent to the
group. This constraint is relaxed in our model. Specifically, for an edge with its tail
node being from group r and its head node being from group s, we use θri to denote
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the probability that the tail node is i and φsj to denote the probability that the head
node is j respectively. In addition, we use −→

g ij and ←−
g ij to denote respectively the

group membership of the tail node and head node of the edge eij .
Up to now, we have given all the quantities in our model. They can be classi-

fied into three classes: observed quantities {Aij }, hidden quantities {−→g ij ,
←−
g ij }, and

model parameters {ωrs, θri , φsj }. To simplify the notations, we henceforth denote
by A the entire set {Aij } and similarly −→

g , ←−
g , ω, θ , φ for {−→g ij }, {←−g ij }, {ωrs}, {θri}

and {φsj }.
With our model, an edge eij is generated in the following process:

1. Select two groups −→
g ij = r and ←−

g ij = s respectively for the tail node and head
node of the edge with probability ωrs ;

2. Draw the tail node i from the group r with probability θri ;
3. Draw the head node j from the group s with probability φsj .

Summing over the latent quantities r and s, the probability that we observe an edge
eij can be written as

Pr(eij |ω,θ,φ) =
∑

rs

ωrsθriφsj . (5.1)

Then, the likelihood of the observed network with respect to our model is

Pr(A|ω,θ,φ) =
∏

ij

(∑

rs

ωrsθriφsj

)Aij

. (5.2)

Note that the self-loop edges are allowed and the weight Aij is taken as the num-
ber of multi-edges connecting node i to node j as done in many existing models
including, for instance, the widely studied configuration model [17].

Intuitively, the parameter θri characterizes the centrality of node i in the group r

from the perspective of outgoing edges while φsj describes the centrality of node j

in the group s from the perspective of incoming edges. Differently from traditional
blockmodels, by differentiating these two kinds of centrality, our model can provide
more flexibility to explore broad types of intrinsic structural regularities in network.
Note that the parameters ωrs , θri , φsj satisfy the normalization conditions

c∑

r=1

c∑

s=1

ωrs = 1,

n∑

i=1

θri = 1,

n∑

j=1

φsj = 1. (5.3)

Now our task is to estimate the model parameters and to infer the unobserved
quantities by fitting the model to the observed network data. The standard frame-
work for such a task is likelihood maximization. Generally, one works not with the
likelihood [Eq. 5.2] itself but with its logarithm (log-likelihood)

L = ln Pr(A|ω,θ,φ)

=
∑

ij

Aij ln

(∑

rs

ωr,sθriφsj

)
. (5.4)
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The maximum of the likelihood and its logarithm are in the same place since the
logarithm is a monotonically increasing function.

Directly maximizing the log-likelihood is difficult because of the inner sum over
the unobserved quantities −→

g ij = r and ←−
g ij = s. Using Jensen’s inequality, the max-

imization of the log-likelihood can be transformed into the maximization of the ex-
pected log-likelihood

L =
∑

−→
g ,

←−
g

Pr(−→g ,
←−
g |A,ω, θ,φ) ln Pr(A|−→g ,

←−
g ,ω, θ,φ)

=
∑

ijrs

Pr(−→g ij = r,
←−
g ij = s|eij ,ω, θ,φ)

[
Aij (lnωrs + ln θri + lnφsj )

]

=
∑

ijrs

qijrsAij (lnωrs + ln θri + lnφsj ), (5.5)

where to simplify the notation we have defined qijrs = Pr(−→g ij = r,
←−
g ij =

s|eij ,ω, θ,φ), which denotes the probability that one observes an edge eij with
its tail node i from group r and its head node j from group s given the observed
network and the model parameters.

With the expected log-likelihood, we can give the best estimate of the value L
and the position of its maximum represents the best estimate of the most likely
values of the model parameters. Specifically, if the value of qijrs is known, we can
find the values of the model parameters ω, θ , φ where L reaches its maximum.
However, the calculation of qijrs requires the values of these model parameters. To
address such a problem, an expectation-maximization (EM) algorithm is adopted.

Under the framework of EM algorithm, we first calculate the value of qijrs by

qijrs = Pr(−→g ij = r,
←−
g ij = s, eij |ω,θ,φ)

Pr(eij |ω,θ,φ)

= ωrsθriφsj∑
rs ωrsθriφsj

. (5.6)

Once we have the values of the qijrs , we can use them to evaluate the expected
log-likelihood and hence to find the values of ω, θ , φ that maximize it.

Introducing the Lagrange multipliers ρ, γr and λs to incorporate the normaliza-
tion conditions in Eq. 5.3, the expected log-likelihood expression to be maximized
becomes

L̃ = L + ρ

(
1 −

∑

rs

ωrs

)
+

∑

r

γr

(
1 −

∑

i

θri

)
+

∑

s

λs

(
1 −

∑

j

φsj

)
. (5.7)

By letting the derivative of L̃ to be 0, the maximum of the expected log-
likelihood occurs at the places where
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωrs =
∑

ij Aij qijrs∑
ijrs Aij qijrs

,

θri =
∑

js Aij qijrs∑
ijs Aij qijrs

,

φsj =
∑

ir Aij qijrs∑
ijr Aij qijrs

.

(5.8)

Equations 5.6 and 5.8 constitute our expectation-maximization algorithm. In the
expectation step, the expected value of log-likelihood is calculated through evalu-
ating the values of qijrs with Eq. 5.6. In the maximization step, the expected value
of log-likelihood is maximized when the values of model parameters ω, θ , φ are
evaluated with Eq. 5.8. Implementation of the algorithm consists merely of iterating
Eqs. 5.6 and 5.8 until convergence.

When the algorithm converges, we obtain a set of values for hidden quantity
qijrs and model parameters ω, θ , φ. This set of values is self-consistent with respect
to Eqs. 5.6 and 5.8. However, it is not always the place where the log-likelihood
reaches its maximum. In other words, the expectation-maximization algorithm may
converge to local maxima of the log-likelihood. With different starting values, the
algorithm will give rise to different solutions. To obtain a satisfactory solution, it is
necessary to perform many runs with different starting values of model parameters
and take the solution giving the highest log-likelihood over all the runs performed.

By fitting the model to the observed network structure with the expectation-
maximization algorithm, the estimated model parameters provide us vital informa-
tion for structural regularities of the network. Specifically, θ and φ describe the
centrality of a node in groups containing it respectively from the perspective of
outgoing edges and incoming edges. The parameter ω characterizes the connecting
patterns among different groups, i.e., the type of structural regularities.

More importantly, according to the model parameters, we can define two kinds of
group memberships αir and βjs respectively from the perspective of outgoing edges
and incoming edges. Specifically, αir is the probability that node i is from group r

when it acts as the tail node of edges while βjs is the probability that node j is from
group s when it acts as the head node of edges. For αir , it can be calculated by

αir =
∑

s ωrsθri∑
rs ωrsθri

. (5.9)

Actually, αir provides a soft or fuzzy membership, i.e., node i can belong to
more than one group simultaneously. When the identified structural regularity cor-
responds to community structure, we actually obtain the overlapping community
structure which has attracted much research attention ever since it is proposed. If
one wants to get a hard partition, we can simply assign each node i to the group r

satisfying r = arg maxs{αis, s = 1,2, . . . , c}. These statements for αri also apply to
βir defined as

βjs =
∑

r ωrsφsj∑
rs ωrsφsj

. (5.10)
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Finally, the model described above so far is based on directed networks. Actually,
the model can be easily generalized to undirected networks by letting the parameter
θ be identical to φ. The derivation follows the case of directed networks and the
results are the same to Eqs. 5.6 and 5.8.

Now we discuss the computational cost of the expectation-maximization algo-
rithm for the fitting of our model. For each iteration in this algorithm, the cost
consists of two parts. The first part is from the calculation of qijrs using Eq. 5.6,
whose time-complexity is O(m × c2). Here m is the number of edges in the net-
work and c is the number of groups. The second part is from the estimation of the
model parameters using Eq. 5.8, whose time-complexity is also O(m × c2). We use
T to denote the average number of iterations before the iteration process converges.
Then, the total cost of the expectation-maximization algorithm for our model is
O(K × T × m × c2). Here, K is the number of times that the iteration process is
restarted with different starting values to obtain a satisfactory solution. It is difficult
to give a theoretical estimation to the number T of iterations. Generally speaking,
T is determined by the network structure and the starting values of model parame-
ters. The number of runs is dependent on the scale of the network and its structural
characteristics. For the networks tested here, only less than 10 runs are enough to
obtain a satisfactory result.

The computational cost limits our model to dealing with networks with tens of
thousands of nodes. We look forward to seeing more efficient implementation for
our model. Note that the method proposed in [18] provides a promising way to
improve the computational efficiency and to decrease the memory space required.
Finally, for the convenience to evaluate the results and to apply our model to more
real world networks, we make the source computer code of our model available.

5.2.3 Comparison with Other Models

In this section, we illustrate the difference and connections between our model with
several existing models. Figure 5.1 gives the schematic for our model and two ex-
isting generative models, namely Newman’s mixture model and Ren’s probabilistic
model.

For Newman’s model, as shown in Fig. 5.1(a), each group r is characterized by
the connecting preference θrj to node j , no matter the node j is contained by the
group r or not. The nodes belonging to the same group have similar connecting pref-
erence. As a result, both assortative and disassortative structural regularities can be
detected by this model. However, this model has no parameter to explicitly charac-
terize the type of the identified structure. More importantly, this model may produce
a result which is a mixture of several types of structure and thus in these cases the
identified structure may bring confused information about the structural regulari-
ties. For example, for the karate club network [20] shown in Fig. 5.2, nodes 12, 15,
16, 19, 21, 23 are identified by this model as overlapped nodes shared by the two
groups, denoted by circles and squares, although these nodes only have connections
to one of the two groups.



100 5 Exploratory Analysis of the Structural Regularities in Networks

Fig. 5.1 Illustration of three generative models for network data (a) Newman’s mixture model,
(b) Ren’s probabilistic model, and (c) our model. Filled circles represent observed quantities and
unfilled ones correspond to hidden quantities. The solid line (with arrow) between node i and j

indicates the existence of one (directed) edge connecting them. The dashed-line connecting two cir-
cles indicates that the relation between the corresponding quantities is unobserved and requires be-
ing learned from the observed network data. Arrows represent the directions of relation. Reprinted
with permission from Ref. [19]. Copyright 2011 by American Physical Society

Fig. 5.2 Results on the karate club network. The real social fission of this network is represented
by two different shapes, circle and square. The shades of nodes indicate the mixed membership
obtained by fitting our model to this network. The sizes of the nodes indicate the centrality degree
(i.e., θri ) of nodes with respect to the left group. Here, θri ranges from 0 for the smallest nodes
to 0.22 for the largest. Reprinted with permission from Ref. [19]. Copyright 2011 by American
Physical Society

For Ren’s model, as shown in Fig. 5.1(b), the two end nodes of each edge are
assumed to be from the same group. As a result, only the assortative structure (com-
munity structure) can be detected using this model. Note that, for this model, no
edge is allowed to connect different groups. The relationship between communities
is reflected by the overlapped nodes.

For our model, it essentially is a kind of stochastic blockmodel, in which the re-
lationships among different node groups are explicitly modeled by the block matrix
w. In this way, our model possesses the advantages of both Newman’s model and
Ren’s model and overcomes the shortcoming of these two models.

On one hand, through learning the matrix w according to observed network data,
various types of structural regularities can be explored by our model. The type of
the identified structure is indicated by the matrix w. Specifically, when the matrix
ω is an identity matrix, the identified structural regularity corresponds to an obvi-
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ous community structure. Meanwhile, multipartite or anti-community structure is
revealed when the estimated model parameter ω is an anti-diagonal matrix with
all the anti-diagonal elements being 1. For other types of structure such as core-
periphery structure and hierarchical structure, the form of ω is the same to the block
matrix ω in traditional block models [15].

On the other hand, using the matrix w, our model discards the assumption of
Ren’s model that two end nodes of one edge are required to be from the same
community. In this sense, Ren’s model is a special case of our model. In addition,
our model also provides several other flexibilities. By representing the centrality of
nodes in group from two different perspectives respectively according to the outgo-
ing edges and incoming edges, our model can detect more broad range of structural
regularities which is out of the capability of other models. This will be shown later
in the subsequent section. Moreover, our model can be further generalized by not
requiring the matrix w be a square matrix.

Finally, we compare our model to two recently proposed stochastic models for
community detection [15, 18]. Firstly, both our model and Karrer’s model [15] are
stochastic blockmodel where a block matrix is adopted to characterize the connect-
ing patterns among groups. The main difference between these two models lies in
that Karrer’s model is designed to detect disjoint structural regularities while our
model is for fuzzy structural regularities. This difference is reflected by the defini-
tion of the model parameters θ and φ in our model and the definition of the model
parameter θ in Karrer’s model. In addition, our model differentiates the outgoing
edges from incoming edges of nodes while Karrer’s model does not. Secondly, sim-
ilar to Ren’s model, Ball’s model [18] focused on the community structure while
our model can uncover multiple types of structural regularities.

5.2.4 Experimental Results

In this section, we demonstrate the effectiveness of our model at exploring the struc-
tural regularities of networks by experiments on several real world or artificial net-
works with various types of intrinsic structural regularities. Then we discuss the
model selection issue, i.e., how to determine the optimal number of groups.

5.2.4.1 Detecting Community Structure

The test network is the famous karate club network constructed by Zachary [20].
This network characterizes the acquaintance relationship between 34 members of
a karate club in an American University. A dispute arose between the club’s ad-
ministrator and its principal karate teacher, and as a result the club eventually split
into two smaller clubs, centered around the administrator and the teacher respec-
tively. The network and its fission are depicted in Fig. 5.2. The administrator and
the teacher are represented by nodes 1 and 33 respectively.
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Table 5.1 Mixed membership of overlapped nodes. Reprinted with permission from Ref. [19].
Copyright 2011 by American Physical Society

Node ID αi1 qi1
a u1i

u1i+u2i

b

3 0.49 0.00 0.49
9 0.70 0.96 0.70

14 0.24 0.00 0.24
20 0.33 0.13 0.33
31 0.71 0.92 0.71
32 0.83 1.00 0.83

aqi1 is defined in [14] as the probability that node i belongs to group 1
b u1i

u1i+u2i
is defined in [11] as the probability that node i belongs to group 1

By setting the group number c = 2, we fit our model to the karate club network
data. The resulted matrix ω is a 2 × 2 identity matrix, indicating that the obtained
structure is community structure. Figure 5.2 shows the two groups found by our
model with the expectation-maximization method. As shown in Fig. 5.2, the shades
of the nodes in the figure represent the values of αi1,1 where group 1 is the left
group. As we can see, our model assigns most of the nodes strongly to one group or
the other. Actually, all but 6 nodes are assigned 100 % to one of the groups (black
and white nodes in the figure). If we simply divide the nodes into two disjoint groups
by assigning each node i to the group r according to the belong coefficients αir , the
resulting groups perfectly correspond to the real split of the club.

In addition, Table 5.1 gives the belonging coefficient of the 6 overlapped nodes
which are shared by the two groups. These overlapped nodes are nodes 3, 9, 14,
20, 31, 32. Note that these overlapped nodes are often misclassified by traditional
partition-based community detection methods. For comparison, we also give the
mixed membership of these six nodes according to Newman’s mixture model and
Ren’s model. As we can see, our model and Ren’s model produce the same re-
sults, which is attributed to the fact that Ren’s model is a special case of our model.
However, Newman’s model behaves very differently from the other two models.
Actually, for Newman’s model, another 10 nodes are also assigned to all the two
groups, e.g., nodes 12, 15. Such a result is counterintuitive to the real structure of
this network. As a conclusion, our model performs better than Newman’s model
at detecting the overlaps between groups. Ren’s model can only detect community
structure while our model can detect other types of structural regularities as illus-
trated in the following test.

5.2.4.2 Detecting Multipartite Structure

Now we illustrate the detection of multipartite or anti-community structure accord-
ing to our model. The test network is the adjacency network of English words taken

1Since this network is an undirected network, the two kinds of belonging coefficient are identical,
i.e., αir = βir .



5.2 Regularity Exploration in Networks with Only Positive Links 103

Fig. 5.3 The adjacency
network of English words.
Node groups corresponding
to adjectives and nouns are
respectively denoted by circle
and square. The shades of
nodes indicate their
belonging coefficient
obtained by fitting our model
to this network. Reprinted
with permission from
Ref. [19]. Copyright 2011 by
American Physical Society

from Ref. [8]. In this network, the nodes represent 112 commonly occurring adjec-
tives and nouns in the novel David Copperfield by Charles Dickens, with edges con-
necting any pair of words that appear adjacent to each other at any place in the text.
Generally, adjectives occur next to nouns in English. Thus most edges in the network
connect an adjective to a noun and the network is approximately bipartite, i.e., this
network possesses anti-community structure. This can be seen clearly in Fig. 5.3,
where the adjectives and nouns are respectively represented by circles and squares.

Fitting our model to this network with c = 2, the resulted ω is a 2 × 2 anti-
diagonal matrix, indicating that the identified structure is bipartite structure. The
obtained two groups and node memberships are shown by the shades of nodes as
shown in Fig. 5.3. We can see that most nodes are assigned to only one group,
although there are several ambiguous cases corresponding to the nodes with inter-
mediate shades. If we assign each node to its most preferred group, the resulted two
disjoint groups well separate the adjectives from the nouns. In fact, 100 of all the
112 nodes are correctly classified. This accuracy is the same to the result given by
Newman’s mixture model.

As a comparison, we also apply Ren’s model to this network by setting the group
number being 2. Only 60 nodes of all the 112 nodes are correctly classified, similar
to the accuracy of random assignment. The ineffectiveness of Ren’s model at this
network is attributed to that Ren’s model presumes the existence of community
structure in the network while the intrinsic structural regularity is bipartite structure.

5.2.4.3 Exploring Other Type of Structural Regularity

In the previous tests, we have demonstrated that our model can be used to detect both
the assortative structure (i.e., community structure) and the disassortative structure
(i.e., multipartite structure) without being told that which type of structural regular-
ities exists in the target networks. Now we will further show that our model can also
detect other types of structure which cannot be revealed by competing models.

We consider the schematic network depicted in Fig. 5.4(a). This network is con-
structed according to the rules in Fig. 5.4(b). Intuitively, according to the outgoing
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Fig. 5.4 A schematic
network. The directed edges
are placed according to the
rules described the right
table. Reprinted with
permission from Ref. [19].
Copyright 2011 by American
Physical Society

edges in this network, the nodes can be divided into two groups: {1,2,3,4} and
{5,6,7,8}. Meanwhile, according to the incoming edges, the nodes of this network
belong to another two groups: {1,2,5,6} and {3,4,7,8}.

We apply Newman’s model, Ren’s model and our model to this schematic net-
work. Limited by the assumptions of models, both Newman’s model and Ren’s
model fail to uncover the intrinsic structural regularity indicated by the construction
rules. For our model, the flexibility of model assumption enables it to accurately
detect such type of structure. Specifically, by fitting our model to this network, the
obtained θ or α reveals the two groups indicated by the outgoing edges while the φ

or β reflects the two groups indicated by the incoming edges.

5.2.4.4 Model Selection Issue

In the previous tests, we need to specify the group number before fitting our model
to network. However, the group number is unknown a prior for many cases. Thus it
is helpful to give a criterion to determinate the appropriate group number for given
network. This task is known as the model selection issue in statistics. We deal with
this problem by using minimum description length principle, which is also used to
handle the model selection issue in Ren’s model.

According to minimum description length principle, the required length to de-
scribe the network data is composed of two parts. The first part describes the coding
length of the network using our model. This coding length is −L for directed net-
work and −L/2 for undirected network. The second part gives the length for coding
model parameters. This part is −∑

rs lnωrs − ∑
ri(ln θri + lnφri) for directed net-

work and −∑
rs lnωrs −∑

ri ln θri for undirected network. In this way, the optimal
c is the one which minimizes the total description length.

As tests, we consider two real world networks with prior knowledge of the in-
trinsic group numbers. These two networks are respectively the journal citation net-
work constructed in Ref. [21] and the American football team network described
in Ref. [1]. In the journal citation network, each node corresponds to a journal and
all the 40 journals are from four different fields: multidisciplinary physics, chem-
istry, biology and ecology. Journals from the same field are more likely connected
by citation relation. For the football network, nodes represent the 115 teams respec-
tively belonging to 12 conferences and generally games are more frequent between
members of the same conference than between teams of different conferences.
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Fig. 5.5 Model selection
results. (a) Journal citation
network and (b) American
football team network.
Reprinted with permission
from Ref. [19]. Copyright
2011 by American Physical
Society

As shown in Fig. 5.5, the number of intrinsic groups is correctly identified for the
journal citation network. However, for the football network, 11 is the optimal num-
ber of groups while the intrinsic number is 12. By checking the found node groups,
we find that only 11 node groups have their identities, i.e., each group contains at
least one node after assigning nodes to their most preferred groups according to
the obtained belonging coefficient α or β . This indicates that the appropriate group
number is 11 for the football network. In fact, many well-known community detec-
tion methods also identify 11 communities.

5.2.5 Summary

In this section, we have studied the exploration of intrinsic structural regularities in
network using a general stochastic blockmodel. Without prior knowledge, our model
not only can detect broad types of intrinsic structural regularities, but also can learn
the type of identified structure directly from the network data. Tests on a number
of artificial and real world networks demonstrate that our model outperforms the
state-of-the-art models at shedding light on the structural features of networks. The
flexibility enables our model to be an effective way to reveal the structural regu-
larities of network and further to help us to understand the relationship between
structure and function of network. For potential applications, our model can be used
to predict the emergence or vanishing of edges in network. This model can be gen-
eralized by releasing the requirement that the block matrix is a square matrix and
investigate the possible applications of the more flexible model.

5.3 Regularity Exploration in Signed Networks

In this section, we explore the structural regularities in signed networks, i.e., net-
works with both positive and negative links. Specifically, we generalize Newman’s
mixture model to explore the broad types of structural regularities in signed net-
work. For Newman’s mixture model which is designed to deal with networks with
only positive links, the nodes in the same group have similar connecting prefer-
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ence to other nodes, i.e., the nodes in the same group have many common friends.
From the perspective of social balance, we generalize such an idea to networks with
both positive and negative links. The nodes in the same group either have many
common friends or have many common enemies. In this way, we propose a model
to explore both the assortative and disassortative structural regularities in networks
with both positive and negative links. In addition, compared with existing methods
for detecting the community structure in networks containing negative links, our
model possesses an distinct advantage, i.e., it can explore both the assortative and
the disassortative structural regularities in a unified way from the perspective of so-
cial balance. Finally, the effectiveness of our model is demonstrated by tests on a
number of real world networks.

5.3.1 Background

These existing methods all assume that the target networks contain only positive
links. However, negative links also exist in real world networks. These links may
reflect the enmity between individuals or organizations. Typical examples include
the unfriendly relations among persons, the competing relations among companies,
and the disputes among countries. They may also represent the relations among anti-
correlated objects. Such kind of examples includes the deactivating relation among
neurons and the repulsions between different kinds of retailer stores. Empirical stud-
ies have shown that the coupled relation between positive links and negative links is
critical to the evolution of the whole networks [22]. Recently, social balance theory
developed by Heider [23] has been enriched to analyze the dynamics of networks
with both positive and negative links [24]. More importantly, the conflicts emerged
from highly interacting individuals could find its root in the couple between positive
and negative links [22]. Therefore, it is crucial to give a method for exploring the
structural regularities in networks with both positive and negative links.

Several community detection methods have been extended to networks with pos-
itive and negative links. Gomez et al. generalized the widely-used modularity for
community detection to deal with negative links [25]. Traag and Bruggeman [26]
gave an extended version of Potts Model to detect the community structure in net-
works with negative links. Rubinov and Sporns [27] gave another variant of mod-
ularity to investigate the functional brain networks containing negative links. Yang
et al. [28] gave an agent-based method to mine the community structure in signed
networks. The common drawback of these methods lies in that they are only ca-
pable of detect community structure and fail to uncover other types of structural
regularities, e.g., disassortative structure.

5.4 Extended Mixture Model for Network Exploration

A directed network is often described by an adjacency matrix A. The entries of A

are defined as follows: Aij = 1 if a positive link is present from node i to node j ,
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Aij = −1 if a negative link is present, and Aij = 0 otherwise. For weighted net-
works, Aij is generalized to represent the weight of the link from i to j . We further
separate the negative links from positive links by setting A+

ij = Aij if Aij > 0 and 0

otherwise, and A−
ij = −Aij if Aij < 0 and 0 otherwise. Thus, A = A+ −A−. For an

undirected network, it can be transformed into a directed one simply by replacing
each undirected link with two oppositely directed links. Note that, for a self-loop
link, only one directed link is used to replace the original undirected one. We here-
after only consider directed networks.

We suppose that the n nodes of network fall into c groups and we denote by gi

the group to which node i belongs. These group memberships are often unknown
to us and we cannot measure them directly. For the goal of exploring the structural
regularities of network, we need to infer the group memberships from the observed
network structure. This is a typical statistical inference problem and the standard
solution for such a problem is to give a generative model for the observed network
structure and then to determine the parameters of the model by finding the best fit
to the observed network.

We generalize Newman’s mixture model from networks containing only positive
links to networks with both positive and negative links. In the extended model, the
probability that we observe the given network is parameterized by three sets of pa-
rameters, namely π , θ and φ. The parameter πr represents the probability that a
randomly chosen node falls into group r . Intuitively, it is the fraction of nodes in
group r . The parameter θri is the probability that a positive link departing from a
particular node in group r connects to node i. Similarly, the parameter φri is the
probability that a negative link from a particular node in group r connects to node i.
In fact, θri and φri represent the “preferences” of nodes in group r about which other
nodes they connect to with positive and negative links respectively. These prefer-
ences define a group as a set of nodes that all have similar patterns of connection to
other nodes. Note that there is no assumption that the nodes i to which the members
of group r connect belong to any particular group, i.e., they can be in the same group
or in different groups or randomly distributed over the entire network. This general
definition for node groups inherits from Newman’s mixture model while the newly
added advantage of our model is its capacity to deal with the negative links with the
additional model parameter φri .

According to social balance theory, such a definition of group is reasonable
for networks with both positive and negative links. On one hand, if two nodes
both have positive links to other nodes, they are more likely to fall into the same
group. This is consistent with the statement in social balance theory that two in-
dividuals have many common friends are also friends with high probability. On
the other hand, if two nodes both have negative links to other particular nodes,
they are also very likely to fall into the same group. This is consistent with the
statement that two individuals having many common enemies are friends with high
probability. Note that such a definition of group may partly violate the social bal-
ance in the sense that three individuals being enemies among any two of them can
also belong to the same group. This is attributed to the non-transitivity of negative
links.
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Note that the parameters πr , θri , φri satisfy the normalization conditions

c∑

r=1

πr = 1,

n∑

i=1

θri = 1,

n∑

i=1

φri = 1. (5.11)

Up to now, we have introduced all the quantities in our model. They can be
classified into three classes: observed quantities {Aij }, hidden quantities {gi}, and
model parameters {πr, θri, φri}. To simplify the notations, we henceforth denote by
A the entire set {Aij } and similarly g, π , θ , φ for {gi}, {πr}, {θri} and {φri}.

With our model, a directed network with its adjacency matrix Aij is generated in
the following process:

1. For each node i, it is assigned to the group gi with probability πgi
;

2. For each positive links from node i, it connects to node j with probability θgi ,j ;
3. For each negative links from node i, it connects to node j with probability φgi,j .

Thus, the likelihood Pr(A,g|π, θ,φ) can be written as

Pr(A,g|π, θ,φ) =
∏

i

[
πgi

∏

j

θ
A+

ij

gi ,j
φ

A−
ij

gi ,j

]
. (5.12)

Note that the self-loop links are allowed and the weight A+
ij and A−

ij are respectively
viewed as the number of positive and negative multi-links from node i to node j as
done in many existing models including, for instance, the widely studied configura-
tion model [17].

To infer the unobserved group membership g, we fit our model to the observed
network structure by maximizing the likelihood in Eq. 5.12 with respect to the model
parameters π , θ and φ. For convenience, one usually works not with the likelihood
itself but with its logarithm

L = ln Pr(A,g|π, θ,φ)

=
∑

i

[
lnπgi

+
∑

j

(
A+

ij ln θgi ,j + A−
ij lnφgi,j

)]
. (5.13)

The maximum of the likelihood and its logarithm occur in the same place since the
logarithm is a monotonically increasing function.

Since that the group membership g is unknown in our model, we cannot calculate
the value of the log-likelihood L directly according to Eq. 5.13. However, we can
first give a good guess at the value of g given the network structure A and the
model parameters π , θ and φ, i.e., we can calculate the probability distribution
Pr(g|A,π, θ,φ). Then using the estimation of g, we calculate an expected value for
the log-likelihood by averaging over g as follows:

L =
∑

g

Pr(g|A,π, θ,φ) ln Pr(A,g|π, θ,φ)
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=
∑

ir

Pr(gi = r|A,π, θ,φ)

[
lnπr +

∑

j

(
A+

ij ln θrj + A−
ij lnφrj

)]

=
∑

ir

qir

[
lnπr +

∑

j

(
A+

ij ln θrj + A−
ij lnφrj

)]
, (5.14)

where to simplify the notation we have defined qir = Pr(gi = r|A,π, θ,φ), which is
the probability that the group membership of node i is r given the observed network
structure and the model parameters. Actually, qir provides vital information on node
memberships. Note that qir satisfies the normalization condition

∑
r qir = 1.

With the expected log-likelihood, we can give the best estimate of the value L
and the position of its maximum represents the best estimate of the most likely val-
ues of the model parameters. Specifically, if the value of qir is known, we can find
the values of the model parameters π , θ , φ where L reaches its maximum. How-
ever, the calculation of qir also requires the values of these model parameters. To
address such a problem, an expectation-maximization (EM) algorithm is adopted.

Under the framework of EM algorithm, we first calculate the value of qir by

qir = Pr(A,gi = r|π, θ,φ)

Pr(A|π, θ,φ)

= πr

∏
j θ

A+
ij

rj φ
A−

ij

rj

∑
s πs

∏
j θ

A+
ij

sj φ
A−

ij

sj

. (5.15)

Once we have the values of the qir , we can use them to evaluate the expected log-
likelihood and hence to find the values of π , θ , φ that maximize it.

Introducing the Lagrange multipliers ρ, γr and λr to incorporate the normaliza-
tion conditions in Eq. 5.11, the expected log-likelihood expression to be maximized
becomes

L̃ = L +ρ

(
1−

∑

r

πr

)
+

∑

r

γr

(
1 −

∑

i

θri

)
+

∑

r

λr

(
1 −

∑

i

φri

)
. (5.16)

By letting the derivative of L̃ to be 0, the maximum of the expected log-
likelihood occurs at the places where

πr = 1

n

∑

i

qir ,

θrj =
∑

i A
+
ij qir

∑
ik A+

ikqir

, (5.17)

φrj =
∑

i A
−
ij qir

∑
ik A−

ikqir

.
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When the algorithm converges, we obtain a set of values for hidden quantity qir

and model parameters π , θ , φ. This set of values is self-consistent with respect to
Eqs. 5.15 and 5.17. However, it does not always correspond to the place where the
log-likelihood reaches its maximum. In other words, the expectation-maximization
algorithm may converge to local maxima of the log-likelihood. With different start-
ing values, the algorithm may give rise to different solutions. To obtain a satisfactory
solution, it is necessary to perform several runs with different starting values and
then take the solution giving the highest log-likelihood over all the runs performed.

As indicated by Eqs. 5.15 and 5.17, a main property of our model is: without
negative links, our model reduces to Newman’s mixture model for the exploratory
analysis of network structure. Actually, our model is also applicable to networks
with either only positive links or only negative links.

Now we discuss the computational cost of the expectation-maximization algo-
rithm for the fitting of our model. For each iteration in this algorithm, the cost con-
sists in two parts. The first part is from the calculation of qir using Eq. 5.15, whose
time-complexity is O(m × c). Here m is the number of edges in the network and c

is the number of groups. The second part is from the estimation of the model param-
eters using Eq. 5.17, whose time-complexity is also O(m × c). We use T to denote
the number of iterations before the iteration process converges. Then, the total cost
of the expectation-maximization algorithm for our model is O(T × m × c). It is
difficult to give a theoretical estimation to the number T of iterations. Generally
speaking, T is determined by the network structure and the starting values for the
expectation-maximization algorithm.

In addition, our model assumes that the number c of groups is known a prior.
However, for many cases, this information is usually unknown. Thus it is desirable
that there is a criterion to determine the appropriate group number for a given net-
work. This task is known as the model selection issue in statistics. Several methods
have been given to deal with this issue. We adopt the minimum description length
principle, which is also used to handle the model selection issue in several exist-
ing generative models for network structure [11]. According to minimum descrip-
tion length principle, the required length to describe the network data is composed
of two parts. The first part describes the coding length of the network using our
model. This coding length is −L for directed network and −L/2 for undirected
network. The second part gives the length for coding model parameters. This part
is −∑

r,πr>0 lnπr − ∑
ri,θri>0 ln θri − ∑

ri,φri>0 lnφri . In this way, the optimal c is
the one which minimizes the total description length.

5.4.1 Comparison with Other Models

In this section, we illustrate the connection or difference between our model and
several existing models.

Firstly, we compare our model with Newman’s mixture model, which is the basis
of our model. Both our model and Newman’s model define node groups according
to similar connecting preference of nodes in the same group. This flexible definition



5.4 Extended Mixture Model for Network Exploration 111

enables these two models to explore multiple types of structural regularities in net-
works, including community structure and multi-partite structure. The main differ-
ence between these two models lies in whether they can deal with the coexistence of
positive links and negative links. For Newman’s mixture model, the negative links
will cancel the positive links and will result in negative values for the parameters
θri and qir . This destroys the probabilistic interpretation of these two parameters.
The possible reason for this problem is the hypothesis that there is only one unique
probability θri to control the connecting preference of nodes, which involves both
positive and negative links. Such a problem facing Newman’s mixture model disap-
pears in our model by using two different probabilities, i.e., θri and φrj , to guide the
formation of links, one for positive links and the other for negative links.

Secondly, we compare our model with existing methods for the detection of com-
munity structure in networks with positive and negative links. Two such kind of ex-
isting methods respectively generalize the modularity optimization method and the
Potts model from networks with only positive links to networks with both positive
and negative links [25, 26]. These methods can only detect community structure
and are incapable of exploring other types of structural regularities in networks.
This drawback is addressed in our model by the flexible definition of node group as
a set of nodes with similar connecting patterns (similar friends or similar enemies)
rather than as a set of highly connected nodes.

5.4.2 Experimental Results

5.4.2.1 Test on Networks with Only Positive Links

Before testing our method on networks with negative and positive links, we first
apply it to networks with only positive networks. Such a test aims to illustrate the
capability of our method at exploring multiple types of structural regularities.

The first tested network is known to have assortative community structure and
the other has disassortative multipartite structure. The first network is the social net-
work of 62 bottlenose dolphins living in Doubtful Sound, New Zealand. This net-
work is compiled by Lusseau [29] from seven years of field studies of the dolphins,
with links between dolphins representing statistically significant frequent associa-
tion. This network splits naturally into two groups during Lusseau’s study.

Figure 5.6 shows the best division of the dolphin network into two groups found
by our method with the group number c = 2. As we can see, all but one node is
correctly assigned to their groups. In addition, our method also returns the prefer-
ences θri for connections from nodes in group r to each other node i. In Fig. 5.6, we
represent by the size of nodes the probabilities θ1i that links from nodes in group 1
will connect to node i. As we can see, the nodes with higher sizes are central to the
group. Thus, θri provides a measure for the importance of node i for group r .

The second network is a bipartite network which is constructed from the South-
ern women dataset [30], depicting 18 women’s attendance to 14 social events. In
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Fig. 5.6 Results on the dolphin network. The real split of this network is represented by filled (or
labeled) and unfilled (or unlabeled) circles. Two shaded regions are the groups identified by our
method. The size of nodes represent the degree of preference being connected by nodes in group 1

Fig. 5.7 Result on the Southern women network. Here, circles represent women and diamonds
represent social events attended by these women. Two shaded regions are the groups identified by
our method

Fig. 5.7, we show the results of the application of our method to the women-event
network. The bipartite structure of this network is exactly uncovered by our method.
The key point to notice is that our method detects the bipartite structure without be-
ing told that it is to look for bipartite structure.

The above tests demonstrate that our method can find both the assortative com-
munity structure and the disassortative multipartite structure. This result is attributed
to that our model is a generalization of Newman’s mixture model, which possesses
an important strength of our method, i.e., it is able to detect broad types of structural
regularities without knowing in advance what type of structure to find. This advan-
tage comes from the flexible definition of node group which relies on the similar
connecting preference of group members to other nodes rather than on high link
density within group. This basic idea is consistent with the social balance theory.
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Fig. 5.8 The adjacency
matrix of the parties of
Slovene Parliamentary. This
matrix characterize the
relations among the 10
parties. The two crossed lines
separate the two groups
identified by our method

5.4.2.2 Tests on Networks with Positive and Negative Links

We further test our method by applying it to several small real networks containing
both positive and negative links. The community structure of these networks is also
known. The first network is the network of 10 parties of the Slovene Parliamentary
in 1994 [31]. This network is weighted and the weights characterize the distance
between different parties. The weights were estimated by the 72 members of all the
90 members of the Slovene National Parliament by completing the questionnaire
designed by a group of experts on Parliament activities. In the questionnaire, the re-
spondents are required to estimate the distance between all the 45 pairs of parties on
the scale from −3 to 3. These values respectively represent the pair of parties being
“very dissimilar”, “quite dissimilar”, “dissimilar”, “neither dissimilar nor similar
(somewhere in between)”, “similar”, “quite similar”, and “very similar”. The final
weights are the averaged value and multiplied by 100. Figure 5.8 depicts the adja-
cency matrix of the obtained network. Applying our method to this signed network,
we show the results in Fig. 5.8, which is consistent with the real division among the
parties in Slovene Parliamentary.

The second network is the Gahuku-Gama Subtribes network, which was cre-
ated based on Read’s study on the cultures of Eastern Central Highlands of New
Guinea [32]. This network describes the political alliance and enmities among the
16 Gahuku-Gama subtribes, which are distributed in a particular area and are en-
gaged in warfare with one another in 1954. The positive and negative links of the
network correspond to political arrangements with positive and negative ties, respec-
tively. Using our method, we analyze the structure of this signed network and detect
three communities. This result is consistent with Read’s study on this network.

5.4.2.3 Application to the Network on International Relations

To illustrate the benefit brought by leveraging the negative links, we further compare
our method to the existing community detection methods for signed networks and
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Newman’s method for exploratory analysis of structural regularities for networks
with only positive links.

The used network is the network of international relations taken from the Cor-
relates of War data set over the period 1993–2001 [26]. In this network, positive
links represent military alliances and negative links denote military disputes. The
disputes are associated with three hostility levels, from “no militarized action” to
“interstate war”. For each pair of countries, we chose the mean level of hostility
between them over the given time interval as the weight of their negative link. The
positive links denote the alliances: 1 for entente, 2 for non-aggression pact and 3 for
defence pact. Finally, we normalized both the negative links and positive links into
the interval [0,1] and the final weight of the link among each pair of countries is
the remainder of the weight of the normalized positive links subtracting the weight
of the normalized negative links. The obtained network contains a giant component
consisting of 161 nodes (countries) and 2517 links (conflicts or alliances). Here, we
only investigate the structure of the giant component.

The community structure of this network has been investigated in several existing
literatures. These existing studies indicated that there are six main power blocs,
each power bloc consisting of a set of countries with similar actions of alliances or
disputes. In [26], the authors labeled these power blocs as (1) The West; (2) Latin
America; (3) Muslim World; (4) Asia; (5) West Africa; and (6) Central Africa. By
setting the group number to be 6 and applying our method to this network, as shown
in Fig. 5.9, we obtain similar results to the ones obtained in [26]. However, one
notable difference exists between the two results. Specifically, the United States
of America and Canada, the two counties in North America, are identified as a
power bloc by our method while they are assigned to the West power bloc by the
method in [26]. Such a difference is attributed to the very different assumptions
behind the two methods. For the method in [26], the positive links are desired to
connect the nodes within the same group while the negative links are among the
nodes from different groups. For our method, the nodes in the same group have
similar connecting preference to other nodes, i.e., they have common friends or
common enemies. For the studied network, as shown in Fig. 5.9, the United States of
America and Canada both have many positive links to the countries in the West and
the Latin America while there are few positive links connecting countries belonging
to the West and the Latin America. Such kind of connecting patterns can be correctly
identified by our method. This further indicates that our method possesses distinct
advantages over the existing methods designed for detecting assortative groups.

Furthermore, to illustrate the benefits provided by leveraging the negative links,
we compare our method with the Newman’s exploratory method which only takes
into account the positive links. Our method and Newman’s method give rise to sim-
ilar results when applied on the international relationship network. However, two
kinds of differences between the results of these two methods provide clear evi-
dence to the advantage of our method. The first kind of difference is related to the
nodes with only negative links or very few positive links. Our method can assign
these nodes to appropriate groups by leveraging the information provided by nega-
tive links. Newman’s method misclassifies these nodes because of its incapability to
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Fig. 5.9 Results on the network of international relations taken from the Correlates of War. Al-
liances are represented by solid lines and disputes are represented by dashed lines. Colors differ-
entiate the group of countries identified by our method

deal with negative links. The second kind of difference lies in the benefit provided by
the negative links connecting different groups. For Newman’s method, positive links
connecting different groups will blur the boundary of the groups. For our method,
the negative links connecting different groups can help distinguish different groups.

Limited by the lack of large-scale networks with both positive and negative links,
we only illustrate the promising benefits possessed by our method through testing
our method on several small real world networks with known structural regularities.
We will conduct more extensive tests if we have large-scale networks in the future.

5.5 Conclusions

In this chapter, we consider the problem of exploring structural regularities of net-
works by dividing the nodes of a network into groups such that the members of each
group have similar patterns of connections to other groups. Specifically, we propose
a general statistical model to describe network structure. In this model, group is
viewed as hidden or unobserved quantity and it is learned by fitting the observed
network data using the expectation-maximization algorithm. Compared with exist-
ing models, the most prominent strength of our model is the high flexibility. This
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strength enables it to possess the advantages of existing models and to overcome
their shortcomings in a unified way. As a result, not only broad types of structure
can be detected without prior knowledge of the type of intrinsic regularities exist-
ing in the target network, but also the type of identified structure can be directly
learned from the network. Moreover, by differentiating outgoing edges from in-
coming edges, our model can detect several types of structural regularities beyond
competing models. Tests on a number of real world and artificial networks demon-
strate that our model outperforms the state-of-the-art model at shedding light on
the structural regularities of networks, including the overlapping community struc-
ture, multipartite structure and several other types of structure which are beyond the
capability of existing models.

Furthermore, by generalizing Newman’s mixture model according to social bal-
ance theory, we have studied the exploration of intrinsic structural regularities in net-
works with both positive and negative links. Without prior knowledge about which
type of structure we are looking for, our method can detect both the assortative and
disassortative structural regularities in a unified way. This is a distinct advantage of
our method over existing methods designed either for certain type of structure or for
networks with only positive links. Tests on a number of real world networks demon-
strate the effectiveness and flexibility of our method. We look forward to seeing the
applications of our method to more real world networks from various fields.
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